嘟嘟嘟
我用的方法是线段树+并差集,简单易懂,常数略大。
咱们按操做时间创建线段树,而且每个节点开一个vector,记录这个区间内有哪些边。而后算出每一条边的出现时间(这个时间必须是一段连续的区间,若是他加入后删除又加入,那就算两条边),像区间更新打标记同样把这条边放进对应节点的vector。
对于询问,咱们只用在这个时间点对应的节点上标记一下便可。显然每个叶子结点最多只能有一个询问。
接下来,咱们dfs整棵线段树,走到一个节点,就把这个节点的vector里面的全部边加进并差集中。到了叶子结点的时候,若是有询问,就并差集查一下连通性便可。而后回溯的时候,咱们要撤销全部的合并操做,即维护一个可撤销的并差集(撤销最后一条加进来的边)。这个也不难,咱们每一次按秩合并的时候用启发式合并,而且不要路径压缩,而后撤销的时候恢复两个集合原来的表明元和大小便可。
写起来很简单:ios
int p[maxn], siz[maxn], top = 0; pr st[maxm << 2]; In int Find(int x) {return x == p[x] ? x : Find(p[x]);} In int merge(int x, int y) { int px = Find(x), py = Find(y); if(px == py) return 0; if(siz[px] > siz[py]) swap(px, py); p[px] = py, siz[py] += siz[px]; st[++top] = mp(px, py); return 1; } In void cancel() { int x = st[top].first, y = st[top].second; --top; p[x] = x, siz[y] -= siz[x]; }
分析一下复杂度,对于每个区间,在线段树上最多只会被分红\(log\)个,所以区间总数量\(mlogm\)个,而后并差集复杂度\(logn\),而遍历线段树的复杂度和并差集操做是独立的,因此不影响,所以总复杂度\(O(mlogmlogn)\)。不过并差集的\(logn\)很小,实际上跑的仍是蛮快的。git
#include<cstdio> #include<iostream> #include<cmath> #include<cstring> #include<algorithm> #include<cstdlib> #include<cctype> #include<map> #include<queue> #include<vector> #include<assert.h> using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define In inline typedef long long ll; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const int maxn = 5e3 + 5; const int maxm = 5e5 + 5; In ll read() { ll ans = 0; char ch = getchar(), las = ' '; while(!isdigit(ch)) las = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(las == '-') ans = -ans; return ans; } In void write(ll x) { if(x < 0) putchar('-'), x = -x; if(x >= 10) write(x / 10); putchar(x % 10 + '0'); } In void MYFILE() { #ifndef mrclr freopen("ha.in", "r", stdin); freopen("ha.out", "w", stdout); #endif } #define pr pair<int, int> #define mp make_pair int n, m, tim[maxn][maxn]; pr q[maxm]; int l[maxm << 2], r[maxm << 2], pos[maxm]; bool vis[maxm << 2]; vector<pr> v[maxm << 2]; In void build(int L, int R, int now) { l[now] = L, r[now] = R; if(L == R) {pos[L] = now; return;} int mid = (L + R) >> 1; build(L, mid, now << 1), build(mid + 1, R, now << 1 | 1); } In void update_E(int L, int R, int now, pr E) { if(l[now] == L && r[now] == R) {v[now].push_back(E); return;} int mid = (l[now] + r[now]) >> 1; if(R <= mid) update_E(L, R, now << 1, E); else if(L > mid) update_E(L, R, now << 1 | 1, E); else update_E(L, mid, now << 1, E), update_E(mid + 1, R, now << 1 | 1, E); } int p[maxn], siz[maxn], top = 0; pr st[maxm << 2]; In int Find(int x) {return x == p[x] ? x : Find(p[x]);} In int merge(int x, int y) { int px = Find(x), py = Find(y); if(px == py) return 0; if(siz[px] > siz[py]) swap(px, py); p[px] = py, siz[py] += siz[px]; st[++top] = mp(px, py); return 1; } In void cancel() { int x = st[top].first, y = st[top].second; --top; p[x] = x, siz[y] -= siz[x]; } int ans[maxm]; In void dfs(int now) { int cnt = 0; for(auto i : v[now]) cnt += merge(i.first, i.second); if(l[now] == r[now]) { if(vis[l[now]]) ans[l[now]] = Find(q[l[now]].first) == Find(q[l[now]].second); for(int i = 1; i <= cnt; ++i) cancel(); return; } dfs(now << 1), dfs(now << 1 | 1); for(int i = 1; i <= cnt; ++i) cancel(); } int main() { // MYFILE(); n = read(), m = read(); build(1, m, 1); int FLG = 0; for(int i = 1; i <= m; ++i) { int op = read(), x = read(), y = read(); if(x > y) swap(x, y); if(!op) tim[x][y] = i; else if(op == 1) update_E(tim[x][y], i, 1, mp(x, y)), tim[x][y] = 0; else q[i] = mp(x, y), FLG = vis[i] = 1; } if(!FLG) return 0; for(int i = 1; i <= n; ++i) for(int j = 1; j <= n; ++j) if(tim[i][j]) update_E(tim[i][j], m, 1, mp(i, j)); for(int i = 1; i <= n; ++i) p[i] = i, siz[i] = 1; dfs(1); for(int i = 1; i <= m; ++i) if(vis[i]) puts(ans[i] ? "Y" : "N"); return 0; }