动手写一个简单版的谷歌TPU

深度学习飞速发展过程当中,人们发现原有的处理器没法知足神经网络这种特定的大量计算,大量的开始针对这一应用进行专用芯片的设计。谷歌的张量处理单元(Tensor Processing Unit,后文简称TPU)是完成较早,具备表明性的一类设计,基于脉动阵列设计的矩阵计算加速单元,能够很好的加速神经网络的计算。本系列文章将利用公开的TPU V1相关资料,对其进行必定的简化、推测和修改,来实际编写一个简单版本的谷歌TPU,以更确切的了解TPU的优点和局限性。html

动手写一个简单版的谷歌TPU系列目录

    谷歌TPU概述和简化缓存

    TPU中的脉动阵列及其实现网络

    神经网络中的归一化和池化的硬件实现函数

    TPU中的指令并行和数据并行工具

    Simple TPU的设计和性能评估性能

    SimpleTPU实例:图像分类学习

    拓展编码

    TPU的边界(规划中)spa

    从新审视深度神经网络中的并行(规划中)翻译

1. TPU设计分析

    人工神经网络中的大量乘加计算(譬如三维卷积计算)大多均可以概括成为矩阵计算。而以前有的各种处理器,在其硬件底层完成的是一个(或多个)标量/向量计算,这些处理器并无充分利用矩阵计算中的数据复用;而Google TPU V1则是专门针对矩阵计算设计的功能强大的处理单元。参考Google公开的论文In-Datacenter Performance Analysis of a Tensor Processing Unit,TPU V1的结构框图以下所示

image

    结构框图中最受瞩目的是巨大的Matrix Multiply Unit,共计64K的MAC能够在700MHz的工做频率下提供92T int8 Ops的性能。这样一个阵列进行矩阵计算的细节将会在基本单元-矩阵乘法阵列进行更进一步的阐述。TPU的设计关键在于充分利用这一乘加阵列,使其利用率尽量高。

    结构图中其余的部分基本都是为尽量跑满这个矩阵计算阵列服务的,据此有如下设计

  1. Local Unified Buffer 提供了256×8b@700MHz的带宽(即167GiB/s,0.25Kib×700/1024/1024=167GiB/s),以保证计算单元不会由于缺乏Data in而闲置;
  2. Local Unified Buffer 的空间高达24MiB,这意味着计算过程的中间结果几乎无需和外界进行交互,也就不存在由于数据带宽而限制计算能力的状况;
  3. Matrix Multiply Unit中每一个MAC内置两个寄存器存储Weight,当一个进行计算时另外一个进行新Weight的载入,以掩盖载入Weight的时间;
  4. 30GiB/s的带宽完成256×256Weight的载入须要大约1430个Cycles,也就意味着一组Weight至少须要计算1430Cycles,所以Accumulators的深度须要为2K(1430取2的幂次,论文中给出的数值是1350,差别未知);
  5. 因为MAC和Activation模块之间须要同时进行计算,所以Accumulators须要用两倍存储来进行pingpang设计,所以Accumulators中存储的深度设计为4k

    所以从硬件设计上来看,只要TPU ops/Weight Byte达到1400左右,理论上TPU就能以接近100%的效率进行计算。但在实际运行过程当中,访存和计算之间的调度,读写之间的依赖关系(譬如Read After Write,须要等写完才能读),指令之间的流水线和空闲周期的处理都会在必定程度影响实际的性能。

    为此,TPU设计了一组指令来控制其访问存和计算,主要的指令包括

  • Read_Host_Memory
  • Read_Weights
  • MatrixMultiply/Convolve
  • Activation
  • Write_Host_Memory

    全部的设计都是为了让矩阵单元不闲下来,设计但愿全部其余指令能够被MatrixMultiply指令所掩盖,所以TPU采用了分离数据获取和执行的设计(Decoupled-access/execute),这意味着在发出Read_Weights指令以后,MatrixMultiply就能够开始执行,不须要等待Read_Weight指令完成;若是Weight/Activation没有准备好,matrix unit会中止。

    须要注意的是,一条指令能够执行数千个周期,所以TPU设计过程当中没有对流水线之间的空闲周期进行掩盖,这是由于因为Pipline带来的数十个周期的浪费对最终性能的影响不到1%。

    关于指令的细节依旧不是特别清楚,更多细节有待讨论补充。

2. TPU的简化

    实现一个完整的TPU有些过于复杂了,为了下降工做量、提升可行性,须要对TPU进行一系列的简化;为作区分,后文将简化后的TPU称为SimpleTPU。全部的简化应不失TPU自己的设计理念。

    TPU中为了进行数据交互,存在包括PCIE Interface、DDR Interface在内的各种硬件接口;此处并不考虑这些标准硬件接口的设计,各种数据交互均经过AXI接口完成;仅关心TPU内部计算的实现,更准确的来讲,Simple TPU计划实现TPU core,即下图红框所示。

image

    因为TPU的规模太大,乘法器阵列大小为256×256,这会给调试和综合带来极大的困难,所以此处将其矩阵乘法单元修改成32×32,其他数据位宽也进行相应修改,此类修改包括

Resource TPU SimpleTPU
Matrix Multiply Unit 256*256 32*32
Accumulators RAM 4K*256*32b 4K*32*32b
Unified Buffer 96K*256*8b 16K*32*8b

    因为Weight FIFO实现上的困难(难以采用C语言描述), Weight采用1K*32*8b的BRAM存放,Pingpang使用;

    因为Matrix Multiply Unit和Accumulators之间的高度相关性,SimpleTPU将其合二为一了;

    因为Activation和Normalized/Pool之间的高度相关性,SimpleTPU将其合二为一了(TPU自己可能也是这样作的),同时只支持RELU激活函数;

    因为并不清楚Systolic Data Setup模块到底进行了什么操做,SimpleTPU将其删除了;SimpleTPU采用了另外一种灵活而又简单的方式,即经过地址上的设计,来完成卷积计算;

    因为中间结果和片外缓存交互会增长instruction生成的困难,此处认为计算过程当中无需访问片外缓存;(这也符合TPU自己的设计思路,但因为Unified Buffer大小变成了1/24,在这一约束下只可以运行更小的模型了)

    因为TPU V1并无提供关于ResNet中加法操做的具体实现方式,SimpleTPU也不支持ResNet相关运算,但能够支持channel concate操做;(虽然有多种方式实现Residual Connection,但均需添加额外逻辑,彷佛都会破坏原有的结构)

    简化后的框图以下所示,模块基本保持一致

clip_image002

3. 基于Xilinx HLS的实现方案

    通常来讲,芯片开发过程当中多采用硬件描述语言(Hardware Description Language),譬如Verilog HDL或者VHDL进行开发和验证。但为了提升编码的效率,同时使得代码更为易懂,SimpleTPU试图采用C语言对硬件底层进行描述;并经过HLS技术将C代码翻译为HDL代码。因为以前使用过Xilinx HLS工具,所以此处依旧采用Xilinx HLS进行开发;关于Xilinx HLS的相关信息,能够参考高层次综合(HLS)-简介,以及一个简单的开发实例利用Xilinx HLS实现LDPC译码器

    虽然此处选择了Xilinx HLS工具,但据我所了解,HLS可能并不适合完成这种较为复杂的IP设计。尽管SimpleTPU已经足够简单,但依旧没法在一个函数中完成全部功能,而HLS并不具备函数间相对复杂的描述能力,两个模块之间每每只能是调用关系或者经过FIFO Channel相连。但因为HLS易写、易读、易验证,此处依旧选择了HLS,并经过一些手段规避掉了部分问题。真实应用中,采用HDL或者HDL结合HLS进行开发是更为合适的选择。

    按规划以后将给出两个关键计算单元的实现,以及控制逻辑和指令的设计方法;最后将给出一个实际的神经网络及其仿真结果和分析。

相关文章
相关标签/搜索