分类模型的评价指标

一、模型评价的意义 在完成模型构建之后,必须对模型的效果进行评估,根据评估结果来继续调整模型的参数、特征或者算法,以达到满意的结果。 评价一个模型最简单也是最常用的指标就是准确率,但是在没有任何前提下使用准确率作为评价指标,准确率往往不能反映一个模型性能的好坏,例如在不平衡的数据集上,正类样本占总数的95%,负类样本占总数的5%; 那么有一个模型把所有样本全部判断为正类,该模型也能达到95%的准确
相关文章
相关标签/搜索