python实训day8

今天是实训的第八天,主要仍是围绕爬虫来说的。html

今日笔记:python

1.解析库之bs4web

''''''

'''

pip3 install beautifulsoup4  # 安装bs4

pip3 install lxml  # 下载lxml解析器

'''

html_doc = """

<html><head><title>The Dormouse's story</title></head>

<body>

<p class="sister"><b>$37</b></p>

<p class="story" id="p">Once upon a time there were three little sisters; and their names were

<a href="http://example.com/elsie" class="sister" >Elsie</a>,

<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and

<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;

and they lived at the bottom of a well.</p>

 

<p class="story">...</p>

"""

 

# 从bs4中导入BeautifulSoup

from bs4 import BeautifulSoup

 

# 调用BeautifulSoup实例化获得一个soup对象

# 参数一: 解析文本

# 参数二:

# 参数二: 解析器(html.parser、lxml...)

soup = BeautifulSoup(html_doc, 'lxml')

 

print(soup)

print('*' * 100)

print(type(soup))

print('*' * 100)

# 文档美化

html = soup.prettify()

print(html)

  2.bs之遍历文档树:mongodb

html_doc = """<html><head><title>The Dormouse's story</title></head><body><p class="sister"><b>$37</b></p><p class="story" id="p">Once upon a time there were three little sisters; and their names were<b>tank</b><a href="http://example.com/elsie" class="sister" >Elsie</a>,<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;and they lived at the bottom of a well.<hr></hr></p><p class="story">...</p>"""

 

from bs4 import BeautifulSoup

soup = BeautifulSoup(html_doc, 'lxml')

 

'''

遍历文档树:

    一、直接使用

    二、获取标签的名称

    三、获取标签的属性

    四、获取标签的内容

    五、嵌套选择

    六、子节点、子孙节点

    七、父节点、祖先节点

    八、兄弟节点

'''

 

# 一、直接使用

print(soup.p)  # 查找第一个p标签

print(soup.a)  # 查找第一个a标签

 

# 二、获取标签的名称

print(soup.head.name)  # 获取head标签的名称

 

# 三、获取标签的属性

print(soup.a.attrs)  # 获取a标签中的全部属性

print(soup.a.attrs['href'])  # 获取a标签中的href属性

 

# 四、获取标签的内容

print(soup.p.text)  # $37

 

# 五、嵌套选择

print(soup.html.head)

 

# 六、子节点、子孙节点

print(soup.body.children)  # body全部子节点,返回的是迭代器对象

print(list(soup.body.children))  # 强转成列表类型

 

print(soup.body.descendants)  # 子孙节点

print(list(soup.body.descendants))  # 子孙节点

 

#  七、父节点、祖先节点

print(soup.p.parent)  # 获取p标签的父亲节点

# 返回的是生成器对象

print(soup.p.parents)  # 获取p标签全部的祖先节点

print(list(soup.p.parents))

 

# 八、兄弟节点

# 找下一个兄弟

print(soup.p.next_sibling)

# 找下面全部的兄弟,返回的是生成器

print(soup.p.next_siblings)

print(list(soup.p.next_siblings))

 

# 找上一个兄弟

print(soup.a.previous_sibling)  # 找到第一个a标签的上一个兄弟节点

# 找到a标签上面的全部兄弟节点

print(soup.a.previous_siblings)  # 返回的是生成器

print(list(soup.a.previous_siblings))

  3.bs之搜索文档树:数据库

''''''

html_doc = """<html><head><title>The Dormouse's story</title></head><body><p class="sister"><b>$37</b></p><p class="story" id="p">Once upon a time there were three little sisters; and their names were<b>tank</b><a href="http://example.com/elsie" class="sister" >Elsie</a>,<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;and they lived at the bottom of a well.<hr></hr></p><p class="story">...</p>"""

'''

搜索文档树:

    find()  找一个  

    find_all()  找多个

     

标签查找与属性查找:

    标签:

            name 属性匹配

            attrs 属性查找匹配

            text 文本匹配

             

        - 字符串过滤器   

            字符串全局匹配

 

        - 正则过滤器

            re模块匹配

 

        - 列表过滤器

            列表内的数据匹配

 

        - bool过滤器

            True匹配

 

        - 方法过滤器

            用于一些要的属性以及不须要的属性查找。

 

    属性:

        - class_

        - id

'''

 

from bs4 import BeautifulSoup

soup = BeautifulSoup(html_doc, 'lxml')

 

# # 字符串过滤器

# # name

p_tag = soup.find(name='p')

print(p_tag)  # 根据文本p查找某个标签

# 找到全部标签名为p的节点

tag_s1 = soup.find_all(name='p')

print(tag_s1)

#

#

# # attrs

# # 查找第一个class为sister的节点

p = soup.find(attrs={"class": "sister"})

print(p)

# # 查找全部class为sister的节点

tag_s2 = soup.find_all(attrs={"class": "sister"})

print(tag_s2)

#

#

# # text

text = soup.find(text="$37")

print(text)

#

#

# # 配合使用:

# # 找到一个id为link二、文本为Lacie的a标签

a_tag = soup.find(name="a", attrs={"id": "link2"}, text="Lacie")

print(a_tag)

 

 

 

# # 正则过滤器

import re

# name

p_tag = soup.find(name=re.compile('p'))

print(p_tag)

 

# 列表过滤器

import re

# name

tags = soup.find_all(name=['p', 'a', re.compile('html')])

print(tags)

 

# - bool过滤器

# True匹配

# 找到有id的p标签

p = soup.find(name='p', attrs={"id": True})

print(p)

 

# 方法过滤器

# 匹配标签名为a、属性有id没有class的标签

def have_id_class(tag):

    if tag.name == 'a' and tag.has_attr('id') and tag.has_attr('class'):

        return tag

 

tag = soup.find(name=have_id_class)

print(tag)

  4.爬取豌豆荚json

主页:

    图标地址、下载次数、大小、详情页地址

 

详情页:

    游戏名、图标名、好评率、评论数、小编点评、简介、网友评论、1-5张截图连接地址、下载地址

https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=1&ctoken=FRsWKgWBqMBZLdxLaK4iem9B

 

https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=2&ctoken=FRsWKgWBqMBZLdxLaK4iem9B

 

https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=3&ctoken=FRsWKgWBqMBZLdxLaK4iem9B

 

32

'''

import requests

from bs4 import BeautifulSoup

# 一、发送请求

def get_page(url):

    response = requests.get(url)

    return response

 

# 二、开始解析

# 解析主页

def parse_index(data):

    soup = BeautifulSoup(data, 'lxml')

 

    # 获取全部app的li标签

    app_list = soup.find_all(name='li', attrs={"class": "card"})

    for app in app_list:

        # print('tank *' * 1000)

        # print(app)

        # 图标地址

        img = app.find(name='img').attrs['data-original']

        print(img)

 

        # 下载次数

        down_num = app.find(name='span', attrs={"class": "install-count"}).text

        print(down_num)

 

        import re

        # 大小

        size = soup.find(name='span', text=re.compile("\d+MB")).text

        print(size)

 

        # 详情页地址

        detail_url = soup.find(name='a', attrs={"class": "detail-check-btn"}).attrs['href']

        print(detail_url)

 

 

def main():

    for line in range(1, 33):

        url = f"https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page={line}&ctoken=FRsWKgWBqMBZLdxLaK4iem9B"

 

        # 一、往app接口发送请求

        response = get_page(url)

        # print(response.text)

        print('*' * 1000)

        # 反序列化为字典

        data = response.json()

        # 获取接口中app标签数据

        app_li = data['data']['content']

        # print(app_li)

        # 二、解析app标签数据

        parse_index(app_li)

 

 

if __name__ == '__main__':

    main() 
主页:

    图标地址、下载次数、大小、详情页地址

 

详情页:

    游戏名、好评率、评论数、小编点评、下载地址、简介、网友评论、1-5张截图连接地址、

https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=1&ctoken=FRsWKgWBqMBZLdxLaK4iem9B

 

https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=2&ctoken=FRsWKgWBqMBZLdxLaK4iem9B

 

https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=3&ctoken=FRsWKgWBqMBZLdxLaK4iem9B

 

32

'''

import requests

from bs4 import BeautifulSoup

# 一、发送请求

def get_page(url):

    response = requests.get(url)

    return response

 

# 二、开始解析

# 解析详情页

def parse_detail(text):

    soup = BeautifulSoup(text, 'lxml')

    # print(soup)

 

    # app名称

    name = soup.find(name="span", attrs={"class": "title"}).text

    # print(name)

 

    # 好评率

    love = soup.find(name='span', attrs={"class": "love"}).text

    # print(love)

 

    # 评论数

    commit_num = soup.find(name='a', attrs={"class": "comment-open"}).text

    # print(commit_num)

 

    # 小编点评

    commit_content = soup.find(name='div', attrs={"class": "con"}).text

    # print(commit_content)

 

    # app下载连接

    download_url = soup.find(name='a', attrs={"class": "normal-dl-btn"}).attrs['href']

    # print(download_url)

 

    print(

        f'''

        ============= tank ==============

        app名称:{name}

        好评率: {love}

        评论数: {commit_num}

        小编点评: {commit_content}

        app下载连接: {download_url}

        ============= end ==============

        '''

    )

 

 

 

# 解析主页

def parse_index(data):

    soup = BeautifulSoup(data, 'lxml')

 

    # 获取全部app的li标签

    app_list = soup.find_all(name='li', attrs={"class": "card"})

    for app in app_list:

        # print(app)

        # print('tank' * 1000)

        # print('tank *' * 1000)

        # print(app)

        # 图标地址

        # 获取第一个img标签中的data-original属性

        img = app.find(name='img').attrs['data-original']

        print(img)

 

        # 下载次数

        # 获取class为install-count的span标签中的文本

        down_num = app.find(name='span', attrs={"class": "install-count"}).text

        print(down_num)

 

        import re

        # 大小

        # 根据文本正则获取到文本中包含 数字 + MB(\d+表明数字)的span标签中的文本

        size = soup.find(name='span', text=re.compile("\d+MB")).text

        print(size)

 

        # 详情页地址

        # 获取class为detail-check-btn的a标签中的href属性

        # detail_url = soup.find(name='a', attrs={"class": "name"}).attrs['href']

        # print(detail_url)

 

        # 详情页地址

        detail_url = app.find(name='a').attrs['href']

        print(detail_url)

 

        # 三、往app详情页发送请求

        response = get_page(detail_url)

 

        # 四、解析app详情页

        parse_detail(response.text)

 

 

def main():

    for line in range(1, 33):

        url = f"https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page={line}&ctoken=FRsWKgWBqMBZLdxLaK4iem9B"

 

        # 一、往app接口发送请求

        response = get_page(url)

        # print(response.text)

        print('*' * 1000)

        # 反序列化为字典

        data = response.json()

 

        # 获取接口中app标签数据

        app_li = data['data']['content']

        # print(app_li)

        # 二、解析app标签数据

        parse_index(app_li)

 

 

if __name__ == '__main__':

    main() 

 5.mongoDB的简单使用:api

MongoDB 非关系型数据库
一 安装与使用
一、下载安装
https://www.mongodb.com/download-center/communityapp

二、在C盘建立一个data/db文件夹
- 数据的存放路径函数

三、mongod启动服务
进入终端,输入mongod启动mongoDB服务。url

四、mongo进入mongoDB客户端
打开一个新的终端,输入mongo进入客户端

二 数据库操做

数据库操做:
切换库:
SQL:
use admin; 有则切换,无则报错。

MongoDB:
use tank; 有则切换,无则建立,并切换tank库中。

查数据库:
SQL:
show databases;

MongoDB:
show dbs;
显示的数据库若无数据,则不显示。

删除库:
SQL:
drop database

MongoDB:
db.dropDatabase()


集合操做: MySQL中叫作表。
建立集合:
SQL:
create table f1, f2...

MongoDB:
# 在当前库中经过.来建立集合
db.student

插入数据:
# 插入多条数据
db.student.insert([{"name1": "tank1"}, {"name2": "tank2"}])

# 插入一条
db.student.insert({"name": "tank"})


查数据:
# 查找student集合中全部数据
db.student.find({})

# 查一条 查找name为tank的记录
db.student.find({"name":"tank"})

三 python连接MongoDB
一、下载第三方模块pymongo
pip3 install pymongo

二、连接mongoDB客户端
client = MongoClient('localhost', 27017)

6.pymongo简单使用:

from pymongo import MongoClient

 

# 一、连接mongoDB客户端

# 参数1: mongoDB的ip地址

# 参数2: mongoDB的端口号 默认:27017

client = MongoClient('localhost', 27017)

# print(client)

 

# 二、进入tank_db库,没有则建立

# print(client['tank_db'])

 

# 三、建立集合

# print(client['tank_db']['people'])

 

# 四、给tank_db库插入数据

 

# 1.插入一条

data1 = {

    'name': 'tank',

    'age': 18,

    'sex': 'male'

}

client['tank_db']['people'].insert(data1)

 

# 2.插入多条

data1 = {

    'name': 'tank',

    'age': 18,

    'sex': 'male'

}

data2 = {

    'name': '李子恒',

    'age': 84,

    'sex': 'female'

}

data3 = {

    'name': '张庭宇',

    'age': 73,

    'sex': 'male'

}

client['tank_db']['people'].insert([data1, data2, data3])

#

# # 五、查数据

# # 查看全部数据

data_s = client['tank_db']['people'].find()

print(data_s)  # <pymongo.cursor.Cursor object at 0x000002EEA6720128>

# # 须要循环打印全部数据

for data in data_s:

    print(data)

 

# # 查看一条数据

data = client['tank_db']['people'].find_one()

print(data)

 

# 官方推荐使用

# 插入一条insert_one

client['tank_db']['people'].insert_one()

# 插入多条insert_many

client['tank_db']['people'].insert_many() 

  二.做业

把豌豆荚爬取的数据插入mongoDB中
- 建立一个wandoujia库
- 把主页的数据存放一个名为index集合中
- 把详情页的数据存放一个名为detail集合中

'''
主页:
    图标地址、下载次数、大小、详情页地址
 
详情页:
    游戏名、好评率、评论数、小编点评、下载地址、简介、网友评论、1-5张截图连接地址、
https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=1&ctoken=FRsWKgWBqMBZLdxLaK4iem9B
 
https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=2&ctoken=FRsWKgWBqMBZLdxLaK4iem9B
 
https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page=3&ctoken=FRsWKgWBqMBZLdxLaK4iem9B
 
32
'''
import requests
from bs4 import BeautifulSoup
from pymongo import MongoClient
'''
三、把豌豆荚爬取的数据插入mongoDB中
    - 建立一个wandoujia库
        - 把主页的数据存放一个名为index集合中
        - 把详情页的数据存放一个名为detail集合中
'''
# 链接MongoDB客户端
client = MongoClient('localhost', 27017)
# 建立或选择wandoujia库,index集合
index_col = client['wandoujia']['index']
# 建立或选择wandoujia库,detail集合
detail_col = client['wandoujia']['detail']
 
# 一、发送请求
def get_page(url):
    response = requests.get(url)
    return response
 
 
# 二、开始解析
# 解析详情页
def parse_detail(text):
 
    soup = BeautifulSoup(text, 'lxml')
    # print(soup)
 
    # app名称
    try:
        name = soup.find(name="span", attrs={"class": "title"}).text
    except Exception:
        # 如有异常,设置为None
        name = None
    # print(name)
 
    # 好评率
    try:
        love = soup.find(name='span', attrs={"class": "love"}).text
 
    except Exception:
        love = None
    # print(love)
 
    # 评论数
    try:
        commit_num = soup.find(name='a', attrs={"class": "comment-open"}).text
    except Exception:
        commit_num = None
    # print(commit_num)
 
    # 小编点评
    try:
        commit_content = soup.find(name='div', attrs={"class": "con"}).text
    except Exception:
        commit_content = None
    # print(commit_content)
 
    # app下载连接
 
    try:
        download_url = soup.find(name='a', attrs={"class": "normal-dl-btn"}).attrs['href']
    except Exception:
        # 如有异常,设置为None
        download_url = None
 
    # print(download_url)
 
    # print(
    #     f'''
    #     ============= tank ==============
    #     app名称:{name}
    #     好评率: {love}
    #     评论数: {commit_num}
    #     小编点评: {commit_content}
    #     app下载连接: {download_url}
    #     ============= end ==============
    #     '''
    # )
 
    # 判断全部数据都存在,正常赋值
    if name and love and commit_num and commit_content and download_url :
        detail_data = {
            'name': name,
            'love': love,
            'commit_num': commit_num,
            'commit_content': commit_content,
            'download_url': download_url
        }
 
    # 若love没有值,则设置为 没人点赞,很惨
    if not love:
        detail_data = {
            'name': name,
            'love': "没人点赞,很惨",
            'commit_num': commit_num,
            'commit_content': commit_content,
            'download_url': download_url
        }
    # 若download_url没有值,则设置为 没有安装包
    if not download_url:
        detail_data = {
            'name': name,
            'love': love,
            'commit_num': commit_num,
            'commit_content': commit_content,
            'download_url': '没有安装包'
        }
 
 
 
    # 插入详情页数据
    detail_col.insert(detail_data)
    print(f'{name}app数据插入成功!')
 
# 解析主页
def parse_index(data):
    soup = BeautifulSoup(data, 'lxml')
 
    # 获取全部app的li标签
    app_list = soup.find_all(name='li', attrs={"class": "card"})
    for app in app_list:
        # print(app)
        # print('tank' * 1000)
        # print('tank *' * 1000)
        # print(app)
        # 图标地址
        # 获取第一个img标签中的data-original属性
        img = app.find(name='img').attrs['data-original']
        # print(img)
 
        # 下载次数
        # 获取class为install-count的span标签中的文本
        down_num = app.find(name='span', attrs={"class": "install-count"}).text
        # print(down_num)
 
        import re
        # 大小
        # 根据文本正则获取到文本中包含 数字 + MB(\d+表明数字)的span标签中的文本
        size = soup.find(name='span', text=re.compile("\d+MB")).text
        # print(size)
 
        # 详情页地址
        # 获取class为detail-check-btn的a标签中的href属性
        # detail_url = soup.find(name='a', attrs={"class": "name"}).attrs['href']
        # print(detail_url)
 
        # 详情页地址
        detail_url = app.find(name='a').attrs['href']
        # print(detail_url)
 
        # 拼接数据
        index_data = {
            'img': img,
            'down_num': down_num,
            'size': size,
            'detail_url': detail_url
        }
 
        # 插入数据
        index_col.insert(index_data)
        print('主页数据插入成功!')
 
        # 三、往app详情页发送请求
        response = get_page(detail_url)
 
        # 四、解析app详情页
        parse_detail(response.text)
 
 
def main():
    for line in range(1, 33):
        url = f"https://www.wandoujia.com/wdjweb/api/category/more?catId=6001&subCatId=0&page={line}&ctoken=FRsWKgWBqMBZLdxLaK4iem9B"
 
        # 一、往app接口发送请求
        response = get_page(url)
        # print(response.text)
        print('*' * 1000)
        # 反序列化为字典
        data = response.json()
 
        # 获取接口中app标签数据
        app_li = data['data']['content']
        # print(app_li)
 
        # 二、解析app标签数据
        parse_index(app_li)
 
        # 执行完全部函数关闭mongoDB客户端
        client.close()
 
if __name__ == '__main__':
    main()
相关文章
相关标签/搜索