目录python
1、异常算法
2、多线程编程
3、守护线程与join多线程
4、GIL与多线程锁并发
5、递归锁与信号量app
6、线程间同步与交互dom
7、多进程async
8、进程间通讯与数据共享函数
9、进程池测试
1、异常
一、异常处理
在编程过程当中为了增长友好性,在程序出现bug时通常不会将错误信息显示给用户,而是现实一个提示的页面,通俗来讲就是不让用户看见大黄页!!!
try: pass except Exception,ex: pass
需求:将用户输入的两个数字相加
while True: num1 = raw_input('num1:') num2 = raw_input('num2:') try: num1 = int(num1) num2 = int(num2) result = num1 + num2 except Exception, e: print '出现异常,信息以下:' print e
二、异常种类
AttributeError 试图访问一个对象没有的树形,好比foo.x,可是foo没有属性x IOError 输入/输出异常;基本上是没法打开文件 ImportError 没法引入模块或包;基本上是路径问题或名称错误 IndentationError 语法错误(的子类) ;代码没有正确对齐 IndexError 下标索引超出序列边界,好比当x只有三个元素,却试图访问x[5] KeyError 试图访问字典里不存在的键 KeyboardInterrupt Ctrl+C被按下 NameError 使用一个还未被赋予对象的变量 SyntaxError Python代码非法,代码不能编译(我的认为这是语法错误,写错了) TypeError 传入对象类型与要求的不符合 UnboundLocalError 试图访问一个还未被设置的局部变量,基本上是因为另有一个同名的全局变量, 致使你觉得正在访问它 ValueError 传入一个调用者不指望的值,即便值的类型是正确的 Exception为抓取全部异常(不能抓取语法的错误)
3.异常其余结构
try: # 主代码块 pass except KeyError,e: # 异常时,执行该块 pass else: # 主代码块执行完,执行该块 pass finally: # 不管异常与否,最终执行该块 pass
四、主动触发异常
try: raise Exception('错误了。。。') except Exception,e: print e
五、自定义异常
class exception_handler(Exception): def __init__(self,msg): self.message = msg def __str__(self): return self.message a = 1 try: raise exception_handler('这是一个异常') except exception_handler as msg: print(msg)
六、Finally及断言
a = 1 try: assert a== 2 #断言,对条件进行判断,若是条件成立向下执行。 print('正常执行') except Exception as msg: print(msg) else:#没出现异常打印信息 print('这是一个测试信息') finally:#不论是否出现异常都打印信息 print('无论条件是否成立,都打印此条信息!')
2、多线程
Threading用于提供线程相关的操做,线程是应用程序中工做的最小单元。
线程有两种调用方式:
直接调用:
import threading import time def sayhi(num): #定义每一个线程要运行的函数 print("running on number:%s" %num) time.sleep(3) if __name__ == '__main__': t1 = threading.Thread(target=sayhi,args=(1,)) #生成一个线程实例 t2 = threading.Thread(target=sayhi,args=(2,)) #生成另外一个线程实例 t1.start() #启动线程 t2.start() #启动另外一个线程 print(t1.getName()) #获取线程名 print(t2.getName())
继承式调用
import threading import time class MyThread(threading.Thread): def __init__(self,num): threading.Thread.__init__(self) self.num = num def run(self):#定义每一个线程要运行的函数 print("running on number:%s" %self.num) time.sleep(3) if __name__ == '__main__': t1 = MyThread(1) t2 = MyThread(2) t1.start() t2.start()
上述代码建立了10个“前台”线程,而后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。
更多方法:
3、守护线程与join
import time import threading def run(n): print('[%s]------running----\n' % n) time.sleep(2) print('--done--') def main(): for i in range(5): t = threading.Thread(target=run,args=[i,]) #time.sleep(1) t.start() t.join(1) print('starting thread', t.getName()) m = threading.Thread(target=main,args=[]) m.setDaemon(True) #将主线程设置为Daemon线程,它退出时,其它子线程会同时退出,不论是否执行完任务 m.start() #m.join(timeout=2) print("---main thread done----")
4、GIL与多线程锁
互斥锁(Mutex)
一个进程下能够启动多个线程,多个线程共享父进程的内存空间,也就意味着每一个线程能够访问同一份数据,此时,若是2个线程同时要修改同一份数据,会出现什么情况?
未加锁代码:
import time import threading def addNum(): global num #在每一个线程中都获取这个全局变量 print('--get num:',num ) time.sleep(1) num -=1 #对此公共变量进行-1操做 num = 100 #设定一个共享变量 thread_list = [] for i in range(100): t = threading.Thread(target=addNum) t.start() thread_list.append(t) for t in thread_list: #等待全部线程执行完毕 t.join() print('final num:', num )
正常来说,这个num结果应该是0, 但在python 2.7上多运行几回,会发现,最后打印出来的num结果不老是0,为何每次运行的结果不同呢? 哈,很简单,假设你有A,B两个线程,此时都 要对num 进行减1操做, 因为2个线程是并发同时运行的,因此2个线程颇有可能同时拿走了num=100这个初始变量交给cpu去运算,当A线程去处完的结果是99,但此时B线程运算完的结果也是99,两个线程同时CPU运算的结果再赋值给num变量后,结果就都是99。那怎么办呢? 很简单,每一个线程在要修改公共数据时,为了不本身在还没改完的时候别人也来修改此数据,能够给这个数据加一把锁, 这样其它线程想修改此数据时就必须等待你修改完毕并把锁释放掉后才能再访问此数据。
*注:不要在3.x上运行,不知为何,3.x上的结果老是正确的,多是自动加了锁
加锁版本:
import time import threading def addNum(): global num #在每一个线程中都获取这个全局变量 print('--get num:',num ) time.sleep(1) lock.acquire() #修改数据前加锁 num -=1 #对此公共变量进行-1操做 lock.release() #修改后释放 num = 100 #设定一个共享变量 thread_list = [] lock = threading.Lock() #生成全局锁 for i in range(100): t = threading.Thread(target=addNum) t.start() thread_list.append(t) for t in thread_list: #等待全部线程执行完毕 t.join() print('final num:', num )
5、递归锁与信号量
递归锁(RLock)
说白了就是在一个大锁中还要再包含子锁
import threading,time def run1(): print("grab the first part data") lock.acquire() global num num +=1 lock.release() return num def run2(): print("grab the second part data") lock.acquire() global num2 num2+=1 lock.release() return num2 def run3(): lock.acquire() res = run1() print('--------between run1 and run2-----') res2 = run2() lock.release() print(res,res2) if __name__ == '__main__': num,num2 = 0,0 lock = threading.RLock() for i in range(10): t = threading.Thread(target=run3) t.start() while threading.active_count() != 1: print(threading.active_count()) else: print('----all threads done---') print(num,num2)
信号量(Semaphore)
互斥锁 同时只容许一个线程更改数据,而Semaphore是同时容许必定数量的线程更改数据 ,好比厕全部3个坑,那最多只容许3我的上厕所,后面的人只能等里面有人出来了才能再进去。
import threading,time def run(n): semaphore.acquire() time.sleep(1) print("run the thread: %s\n" %n) semaphore.release() if __name__ == '__main__': num= 0 semaphore = threading.BoundedSemaphore(5) #最多容许5个线程同时运行 for i in range(20): t = threading.Thread(target=run,args=(i,)) t.start() while threading.active_count() != 1: pass #print threading.active_count() else: print('----all threads done---') print(num)
6、线程间同步与交互(Events)
经过Event来实现两个或多个线程间的交互,下面是一个红绿灯的例子,即起动一个线程作交通指挥灯,生成几个线程作车辆,车辆行驶按红灯停,绿灯行的规则。
import threading,time import random def light(): if not event.isSet(): event.set() #wait就不阻塞 #绿灯状态 count = 0 while True: if count < 10: print('\033[42;1m--green light on---\033[0m') elif count <13: print('\033[43;1m--yellow light on---\033[0m') elif count <20: if event.isSet(): event.clear() print('\033[41;1m--red light on---\033[0m') else: count = 0 event.set() #打开绿灯 time.sleep(1) count +=1 def car(n): while 1: time.sleep(random.randrange(10)) if event.isSet(): #绿灯 print("car [%s] is running.." % n) else: print("car [%s] is waiting for the red light.." %n) if __name__ == '__main__': event = threading.Event() Light = threading.Thread(target=light) Light.start() for i in range(3): t = threading.Thread(target=car,args=(i,)) t.start()
7、多进程
from multiprocessing import Process import threading import time def foo(i): print 'say hi',i for i in range(10): p = Process(target=foo,args=(i,)) p.start()
注意:因为进程之间的数据须要各自持有一份,因此建立进程须要的很是大的开销。
8、进程间通讯与数据共享
不一样进程间内存是不共享的,要想实现两个进程间的数据交换,能够用如下方法:
Queues
使用方法跟threading里的queue差很少
from multiprocessing import Process, Queue def f(q): q.put([42, None, 'hello']) if __name__ == '__main__': q = Queue() p = Process(target=f, args=(q,)) p.start() print(q.get()) # prints "[42, None, 'hello']" p.join()
Pipes
from multiprocessing import Process, Pipe def f(conn): conn.send([42, None, 'hello']) conn.close() if __name__ == '__main__': parent_conn, child_conn = Pipe() p = Process(target=f, args=(child_conn,)) p.start() print(parent_conn.recv()) # prints "[42, None, 'hello']" p.join()
Managers
from multiprocessing import Process, Manager def f(d, l): d[1] = '1' d['2'] = 2 d[0.25] = None l.append(1) print(l) if __name__ == '__main__': with Manager() as manager: d = manager.dict() l = manager.list(range(5)) p_list = [] for i in range(10): p = Process(target=f, args=(d, l)) p.start() p_list.append(p) for res in p_list: res.join() print(d) print(l)
Array
from multiprocessing import Process,Array temp = Array('i', [11,22,33,44]) def Foo(i): temp[i] = 100+i for item in temp: print i,'----->',item for i in range(2): p = Process(target=Foo,args=(i,)) p.start()
进程同步
from multiprocessing import Process, Lock def f(l, i): l.acquire() try: print('hello world', i) finally: l.release() if __name__ == '__main__': lock = Lock() for num in range(10): Process(target=f, args=(lock, num)).start()
9、进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,若是进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
from multiprocessing import Process,Pool import time def Foo(i): time.sleep(2) return i+100 def Bar(arg): print('-->exec done:',arg) pool = Pool(5) for i in range(10): pool.apply_async(func=Foo, args=(i,),callback=Bar) #pool.apply(func=Foo, args=(i,)) print('end') pool.close() pool.join()#进程池中进程执行完毕后再关闭,若是注释,那么程序直接关闭。