JavaShuo
栏目
标签
《Blood Vessel Segmentation in Fundus Images Based on Improved Loss Function》
时间 2021-07-12
栏目
图片处理
繁體版
原文
原文链接
一、采用U-Net网络结构 三大优点:支持小数量的数据训练模型;通过每个像素的分类得到更高的分割精度;训练模型更快。 二、对比损失函数 A.Binary Cross Entropy(BCE) 当正样本数远小于负样本数时(血管的像素数远小于背景像素数,约为1:9),模型很难分割出血管。 B.Dice Loss Dice similarity coeffcient(DSC)表示两个轮廓区域的相似程度。
>>阅读原文<<
相关文章
1.
[Style Transfer]——Blood Vessel Geometry Synthesis using Generative Adversarial Networks
2.
【医学+深度论文:F05】2018 automatic optic disk and cup segmentation of fundus images using deep learning
3.
Anchor Loss: Modulating Loss Scale based on Prediction Difficulty
4.
Research on Pedestrian Attribute Recognition Based on Semantic Segmentation in Natural Scene
5.
【语义分割综述】A Survey On Deep Learning-based Architectures For Semantic Segmentation On 2D Images
6.
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function 阅读笔记
7.
Transferred Deep Learning-Based Change Detection in Remote Sensing Images
8.
《Dense Residual Network for Retinal Vessel Segmentation》
9.
【医学影像系列:二】2019 综述阅读 Going Deep in Medical Image Analysis:Concepts, Methods, Challenges and Future
10.
Cross entropy loss function in DNN RNN
更多相关文章...
•
Docker images 命令
-
Docker命令大全
•
SQL MIN() Function
-
SQL 教程
•
Docker 清理命令
•
Java 8 Stream 教程
相关标签/搜索
based
segmentation
blood
improved
function
loss
images
javascript...function
icon&images
join..on
图片处理
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
外部其他进程嵌入到qt FindWindow获得窗口句柄 报错无法链接的外部符号 [email protected] 无法被([email protected]@[email protected]@@引用
2.
UVa 11524 - InCircle
3.
The Monocycle(bfs)
4.
VEC-C滑窗
5.
堆排序的应用-TOPK问题
6.
实例演示ElasticSearch索引查询term,match,match_phase,query_string之间的区别
7.
数学基础知识 集合
8.
amazeUI 复择框问题解决
9.
背包问题理解
10.
算数平均-几何平均不等式的证明,从麦克劳林到柯西
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
[Style Transfer]——Blood Vessel Geometry Synthesis using Generative Adversarial Networks
2.
【医学+深度论文:F05】2018 automatic optic disk and cup segmentation of fundus images using deep learning
3.
Anchor Loss: Modulating Loss Scale based on Prediction Difficulty
4.
Research on Pedestrian Attribute Recognition Based on Semantic Segmentation in Natural Scene
5.
【语义分割综述】A Survey On Deep Learning-based Architectures For Semantic Segmentation On 2D Images
6.
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function 阅读笔记
7.
Transferred Deep Learning-Based Change Detection in Remote Sensing Images
8.
《Dense Residual Network for Retinal Vessel Segmentation》
9.
【医学影像系列:二】2019 综述阅读 Going Deep in Medical Image Analysis:Concepts, Methods, Challenges and Future
10.
Cross entropy loss function in DNN RNN
>>更多相关文章<<