DLA降维简述

DLA起源之解 考虑一个样本集合X=[x1,x2...xN],每个样本属于C个类中的一个。我们可以使用类似于PCA,LDA的线性降维方法将x由m维降至d维(m>d)。但是线性降维方法存在一些问题,例如LDA中的求逆运算,经常可能因为矩阵的奇异性是降维结果恶化。而这里介绍的DLA方法可以避免这个问题。对了忘了给DLA一个'名正言顺'的名字,全名就是'Discriminative Locality A
相关文章
相关标签/搜索