聚类算法(一)

本文主要介绍聚类算法的原理、聚类分析的两个基本问题:性能度量和距离计算,聚类分析中类个数的确定方法与原则,以及进行聚类分析前的数据中心化和标准化变换处理。 一、概述 聚类(Clustering)是一种无监督学习(Unsupervised Learning),即训练样本的标记信息是未知的。聚类既可以通过对无标记训练样本的学习来揭示数据的内在性质及规律,找寻数据内在的分布结构,也可以作为分类等其他学习
相关文章
相关标签/搜索