你们好,并发编程
进入第八篇。html
直到上一篇,咱们终于迎来了Python并发编程中,最高级、最重要、固然也是最难的知识点--协程
。python
当你看到这一篇的时候,请确保你对生成器的知识,有必定的了解。固然不了解,也没有关系,你只要花个几分钟的时间,来看下我上一篇文章,就可以让你认识生成器,入门协程了。程序员
再次提醒:
本系列全部的代码均在Python3下编写,也建议你们尽快投入到Python3的怀抱中来。编程
在上一篇中,咱们从生成器的基本认识与使用,成功过渡到了协程。多线程
但必定有许多人,只知道协程是个什么东西,但并不知道为何要用协程?换句话来讲,并不知道在什么状况下用协程?
它相比多线程来讲,有哪些过人之处呢?并发
在开始讲yield from
以前,我想先解决一下这个给不少人带来困惑的问题。app
举个例子。
假如咱们作一个爬虫。咱们要爬取多个网页,这里简单举例两个网页(两个spider函数),获取HTML(耗IO耗时),而后再对HTML对行解析取得咱们感兴趣的数据。异步
咱们的代码结构精简以下:ide
def spider_01(url):
html = get_html(url)
...
data = parse_html(html)
def spider_02(url):
html = get_html(url)
...
data = parse_html(html)
咱们都知道,get_html()
等待返回网页是很是耗IO的,一个网页还好,若是咱们爬取的网页数据极其庞大,这个等待时间就很是惊人,是极大的浪费。函数
聪明的程序员,固然会想若是能在get_html()
这里暂停一下,不用傻乎乎地去等待网页返回,而是去作别的事。等过段时间再回过头来到刚刚暂停的地方,接收返回的html内容,而后还能够接下去解析parse_html(html)
。
利用常规的方法,几乎是没办法实现如上咱们想要的效果的。因此Python想得很周到,从语言自己给咱们实现了这样的功能,这就是yield
语法。能够实如今某一函数中暂停的效果。
试着思考一下,假如没有协程,咱们要写一个并发程序。可能有如下问题
1)使用最常规的同步编程要实现异步并发效果并不理想,或者难度极高。
2)因为GIL锁的存在,多线程的运行须要频繁的加锁解锁,切换线程,这极大地下降了并发性能;
而协程的出现,恰好能够解决以上的问题。它的特色有
- 协程是在单线程里实现任务的切换的
- 利用同步的方式去实现异步
- 再也不须要锁,提升了并发性能
yield from
是在Python3.3才出现的语法。因此这个特性在Python2中是没有的。
yield from
后面须要加的是可迭代对象,它能够是普通的可迭代对象,也能够是迭代器,甚至是生成器。
咱们能够用一个使用yield
和一个使用yield from
的例子来对比看下。
使用yield
# 字符串
astr='ABC'
# 列表
alist=[1,2,3]
# 字典
adict={"name":"wangbm","age":18}
# 生成器
agen=(i for i in range(4,8))
def gen(*args, **kw):
for item in args:
for i in item:
yield i
new_list=gen(astr, alist, adict, agen)
print(list(new_list))
# ['A', 'B', 'C', 1, 2, 3, 'name', 'age', 4, 5, 6, 7]
使用yield from
# 字符串
astr='ABC'
# 列表
alist=[1,2,3]
# 字典
adict={"name":"wangbm","age":18}
# 生成器
agen=(i for i in range(4,8))
def gen(*args, **kw):
for item in args:
yield from item
new_list=gen(astr, alist, adict, agen)
print(list(new_list))
# ['A', 'B', 'C', 1, 2, 3, 'name', 'age', 4, 5, 6, 7]
由上面两种方式对比,能够看出,yield from后面加上可迭代对象,他能够把可迭代对象里的每一个元素一个一个的yield出来,对比yield来讲代码更加简洁,结构更加清晰。
若是你认为只是 yield from
仅仅只有上述的功能的话,那你就过小瞧了它,它的更强大的功能还在后面。
当 yield from
后面加上一个生成器后,就实现了生成的嵌套。
固然实现生成器的嵌套,并非必定必需要使用yield from
,而是使用yield from
可让咱们避免让咱们本身处理各类料想不到的异常,而让咱们专一于业务代码的实现。
若是本身用yield
去实现,那只会加大代码的编写难度,下降开发效率,下降代码的可读性。既然Python已经想得这么周到,咱们固然要好好利用起来。
讲解它以前,首先要知道这个几个概念
一、
调用方
:调用委派生成器的客户端(调用方)代码
二、委托生成器
:包含yield from表达式的生成器函数
三、子生成器
:yield from后面加的生成器函数
你可能不知道他们都是什么意思,不要紧,来看下这个例子。
这个例子,是实现实时计算平均值的。
好比,第一次传入10,那返回平均数天然是10.
第二次传入20,那返回平均数是(10+20)/2=15
第三次传入30,那返回平均数(10+20+30)/3=20
# 子生成器
def average_gen():
total = 0
count = 0
average = 0
while True:
new_num = yield average
count += 1
total += new_num
average = total/count
# 委托生成器
def proxy_gen():
while True:
yield from average_gen()
# 调用方
def main():
calc_average = proxy_gen()
next(calc_average) # 预激下生成器
print(calc_average.send(10)) # 打印:10.0
print(calc_average.send(20)) # 打印:15.0
print(calc_average.send(30)) # 打印:20.0
if __name__ == '__main__':
main()
认真阅读以上代码,你应该很容易能理解,调用方、委托生成器、子生成器之间的关系。我就很少说了
委托生成器的做用是:在调用方与子生成器之间创建一个双向通道
。
所谓的双向通道是什么意思呢?
调用方能够经过send()
直接发送消息给子生成器,而子生成器yield的值,也是直接返回给调用方。
你可能会常常看到有些代码,还能够在yield from
前面看到能够赋值。这是什么用法?
你可能会觉得,子生成器yield回来的值,被委托生成器给拦截了。你能够亲自写个demo运行试验一下,并非你想的那样。
由于咱们以前说了,委托生成器,只起一个桥梁做用,它创建的是一个双向通道
,它并无权利也没有办法,对子生成器yield回来的内容作拦截。
为了解释这个用法,我仍是用上述的例子,并对其进行了一些改造。添加了一些注释,但愿你能看得明白。
按照惯例,咱们仍是举个例子。
# 子生成器
def average_gen():
total = 0
count = 0
average = 0
while True:
new_num = yield average
if new_num is None:
break
count += 1
total += new_num
average = total/count
# 每一次return,都意味着当前协程结束。
return total,count,average
# 委托生成器
def proxy_gen():
while True:
# 只有子生成器要结束(return)了,yield from左边的变量才会被赋值,后面的代码才会执行。
total, count, average = yield from average_gen()
print("计算完毕!!\n总共传入 {} 个数值, 总和:{},平均数:{}".format(count, total, average))
# 调用方
def main():
calc_average = proxy_gen()
next(calc_average) # 预激协程
print(calc_average.send(10)) # 打印:10.0
print(calc_average.send(20)) # 打印:15.0
print(calc_average.send(30)) # 打印:20.0
calc_average.send(None) # 结束协程
# 若是此处再调用calc_average.send(10),因为上一协程已经结束,将重开一协程
if __name__ == '__main__':
main()
运行后,输出
10.0
15.0
20.0
计算完毕!!
总共传入 3 个数值, 总和:60,平均数:20.0
学到这里,我相信你确定要问,既然委托生成器,起到的只是一个双向通道的做用,我还须要委托生成器作什么?我调用方直接调用子生成器不就好啦?
高能预警~~~
下面咱们来一块儿探讨一下,到底yield from 有什么过人之处,让咱们非要用它不可。
若是咱们去掉委托生成器,而直接调用子生成器。那咱们就须要把代码改为像下面这样,咱们须要本身捕获异常并处理。而不像使yield from
那样省心。
# 子生成器
# 子生成器
def average_gen():
total = 0
count = 0
average = 0
while True:
new_num = yield average
if new_num is None:
break
count += 1
total += new_num
average = total/count
return total,count,average
# 调用方
def main():
calc_average = average_gen()
next(calc_average) # 预激协程
print(calc_average.send(10)) # 打印:10.0
print(calc_average.send(20)) # 打印:15.0
print(calc_average.send(30)) # 打印:20.0
# ----------------注意-----------------
try:
calc_average.send(None)
except StopIteration as e:
total, count, average = e.value
print("计算完毕!!\n总共传入 {} 个数值, 总和:{},平均数:{}".format(count, total, average))
# ----------------注意-----------------
if __name__ == '__main__':
main()
此时的你,可能会说,不就一个StopIteration
的异常吗?本身捕获也没什么大不了的。
你要是知道yield from
在背后为咱们默默无闻地作了哪些事,你就不会这样说了。
具体yield from
为咱们作了哪些事,能够参考以下这段代码。
#一些说明
"""
_i:子生成器,同时也是一个迭代器
_y:子生成器生产的值
_r:yield from 表达式最终的值
_s:调用方经过send()发送的值
_e:异常对象
"""
_i = iter(EXPR)
try:
_y = next(_i)
except StopIteration as _e:
_r = _e.value
else:
while 1:
try:
_s = yield _y
except GeneratorExit as _e:
try:
_m = _i.close
except AttributeError:
pass
else:
_m()
raise _e
except BaseException as _e:
_x = sys.exc_info()
try:
_m = _i.throw
except AttributeError:
raise _e
else:
try:
_y = _m(*_x)
except StopIteration as _e:
_r = _e.value
break
else:
try:
if _s is None:
_y = next(_i)
else:
_y = _i.send(_s)
except StopIteration as _e:
_r = _e.value
break
RESULT = _r
以上的代码,稍微有点复杂,有兴趣的同窗能够结合如下说明去研究看看。
- 迭代器(便可指子生成器)产生的值直接返还给调用者
- 任何使用send()方法发给委派生产器(即外部生产器)的值被直接传递给迭代器。若是send值是None,则调用迭代器next()方法;若是不为None,则调用迭代器的send()方法。若是对迭代器的调用产生StopIteration异常,委派生产器恢复继续执行yield from后面的语句;若迭代器产生其余任何异常,则都传递给委派生产器。
- 子生成器可能只是一个迭代器,并非一个做为协程的生成器,因此它不支持.throw()和.close()方法,便可能会产生AttributeError 异常。
- 除了GeneratorExit 异常外的其余抛给委派生产器的异常,将会被传递到迭代器的throw()方法。若是迭代器throw()调用产生了StopIteration异常,委派生产器恢复并继续执行,其余异常则传递给委派生产器。
- 若是GeneratorExit异常被抛给委派生产器,或者委派生产器的close()方法被调用,若是迭代器有close()的话也将被调用。若是close()调用产生异常,异常将传递给委派生产器。不然,委派生产器将抛出GeneratorExit 异常。
- 当迭代器结束并抛出异常时,yield from表达式的值是其StopIteration 异常中的第一个参数。
- 一个生成器中的return expr语句将会从生成器退出并抛出 StopIteration(expr)异常。
没兴趣看的同窗,只要知道,yield from
帮咱们作了不少的异常处理,并且全面,而这些若是咱们要本身去实现的话,一个是编写代码难度增长,写出来的代码可读性极差,这些咱们就不说了,最主要的是极可能有遗漏,只要哪一个异常没考虑到,都有可能致使程序崩溃什么的。
好了,今天就讲这些。