LDA线性判别分析

问题 之前我们讨论的 PCA降维,对样本数据来言,可以是没有类别标签 y 的。如果我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA 来降维,但 PCA 没有将类别标签考虑进去,属于无监督的。 假设我们对一张 100*100 像素的图片做人脸识别, 每个像素是一个特征,那么会有 10000 个特征,而对应的类别标签 y 仅仅是 0/1 值, 1 代表是人脸。
相关文章
相关标签/搜索