[DE] How to learn Big Data【了解大数据】html
[DE] Pipeline for Data Engineering【工做流案例示范】
python
[DE] ML on Big data: MLlib【大数据的机器学习方案】
git
[Spark] 00 - Install Hadoop & Spark【ing】github
[Spark] 01 - What is Spark【RDD原理和方法】算法
[Spark] 02 - Practice PySpark【实践编程】sql
[Spark] 03 - Spark SQL【具备了SQL操做的便捷性】数据库
[Spark] 04 - What is Spark Streamingapache
[Spark] 06 - Structured Streaming【对应 DataFrame】架构
[Full-stack] 一切皆在云上 - AWS【AWS基础服务】
[AWS] 01 - What is Amazon EMR【EMR简介】
[AWS] 02 - Pipeline on EMR【基础了解】
/* important */
[Code] 大蛇之数据工程【语法驱动】
[Code] 变态之人键合一【需求驱动】
[Pandas] 01 - A guy based on NumPy【如何高性能】
[Pandas] 02 - Tutorial of NumPy【NumPy常见用法】
[Pandas] 03 - DataFrame【读入并处理表格】
[Pandas] 04 - Efficient I/O【从数据库加载到arr, df, EArray】
[Feature] Preprocessing tutorial【伟哥的特征工程步骤讲解】
[Feature] Feature engineering【特征工程大纲】
[Feature] Build pipeline【展现Pipeline大概思路过程】
[Feature] Final pipeline: custom transformers【本章总结】
[AI] 深度数学 - Bayes【Scikit-learn Cookbook】
[Distributed ML] Yi WANG's talk【王益大佬】
[Matplotlib] Data Representation
[Kaggle] Online Notebooks【模块化代码】
[Kaggle] How to kaggle?【方法导论】
[Kaggle] How to handle big data?【方法进阶】
[ML] Pyspark ML tutorial for beginners【房价预测之"常规分析套路"】
[ML] Load and preview large scale data【保证特征完整性】
[Link] https://spark.apache.org/docs/2.4.4/ml-guide.html
[ML] Pipeline in Distributed ML Library【Pipline"套路”】
[ML] Online learning【Pipline做为 “在线学习” 的 “数据源”】
[Spark] Spark 3.0 Accelerator Aware Scheduling - GPU
[ML] LIBSVM Data: Classification, Regression, and Multi-label【三种方案时效对比】
[ML] Machine Learning in the Common Infrastructure ecosystem【架构了解】
本篇章终极形态,开发/优化一个大数据分布式算法。
https://github.com/apache/spark/tree/master/examples/src/main/python/ml
https://spark.apache.org/mllib/
http://stanford.edu/~rezab/slides/
Distributed Computing with Spark, Reza Zadeh 20140623
Reza Zadeh, Scalable Machine Learning
Apache Spark™ ML and Distributed Learning (1/5) (databrick)
Module 4: Creating Distributed Algorithms
stanford.edu: Chapter 12 Large-Scale Machine Learning
<Large Scale Machine Learning with Python>
Processing Big Data in Main Memory and on GPU,2016年硕士论文
[Spark News] Spark + GPU are the next generation technology
/* implement */