数学似宇宙,韭菜只关心其中实用的部分。html
scikit-learn (sklearn) 官方文档中文版算法
scikit-learn Machine Learning in Pythonapache
一个新颖的online图书资源集,很是棒。网络
机器学习原理dom
9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process【ignore】机器学习
[Scikit-learn] 1.1 Generalized Linear Models - Bayesian Ridge Regression【等价效果】wordpress
8. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders函数
[UFLDL] *Sparse Representation【稀疏表达】学习
7. [Bayesian] “我是bayesian我怕谁”系列 - Boltzmann Distribution【ignore】
[Scikit-learn] Dynamic Bayesian Network - Conditional Random Field【去噪、词性标注】
6. [Bayesian] “我是bayesian我怕谁”系列 - Markov and Hidden Markov Models【隐马及其扩展】
[Scikit-learn] Dynamic Bayesian Network - HMM【基础实践】
[Scikit-learn] Dynamic Bayesian Network - Kalman Filter【车定位预测】
[Scikit-learn] *Dynamic Bayesian Network - Partical Filter【机器人自我定位】
5. [Bayesian] “我是bayesian我怕谁”系列 - Continuous Latent Variables【降维:PCA, PPCA, FA, ICA】
[Scikit-learn] 4.4 Dimensionality reduction - PCA
[Scikit-learn] 2.5 Dimensionality reduction - Probabilistic PCA & Factor Analysis
[Scikit-learn] 2.5 Dimensionality reduction - ICA
[Scikit-learn] 1.2 Dimensionality reduction - Linear and Quadratic Discriminant Analysis
4. [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference【公式推导解读】
[Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM
[Scikit-learn] 2.1 Clustering - Variational Bayesian Gaussian Mixture
3. [Bayesian] “我是bayesian我怕谁”系列 - Latent Variables【概念解读】
[Bayes] Concept Search and LSI
[Bayes] Concept Search and PLSA
[Bayes] Concept Search and LDA
2. [Bayesian] “我是bayesian我怕谁”系列 - Exact Inference【ignore】
1. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes with Prior【贝叶斯在文本分类的极简例子】
[ML] Naive Bayes for Text Classification【原理概览】
[Bayes] Maximum Likelihood estimates for text classification【代码实现】
[Scikit-learn] 1.9 Naive Bayes【不一样先验的朴素贝叶斯】
<Statistical Inference> goto: 647/686
[Math] From Prior to Posterior distribution【先验后验基础知识】
[Bayes] qgamma & rgamma: Central Credible Interval【后验区间估计】
[Bayes] Multinomials and Dirichlet distribution【狄利克雷分布】
其中两个概念比较重要:
后验便是:贝叶斯统计推断
结合损失函数:贝叶斯统计决策
一种逼近求值策略:贝叶斯计算方法
[Bayes] MCMC (Markov Chain Monte Carlo)【利用了马尔科夫的平稳性】
(a). Metropolis-Hasting算法
(b). Gibbs采样算法
[ML] Roadmap: a long way to go【学习路线北斗导航】
[UFLDL] Basic Concept【基本ML概念】
[Scikit-learn] 1.5 Generalized Linear Models - SGD for Regression
[Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification
[Scikit-learn] 1.1 Generalized Linear Models - Comparing various online solvers
[Scikit-learn] Yield miniBatch for online learning.
[UFLDL] Linear Regression & Classification
[Scikit-learn] 1.1 Generalized Linear Models - from Linear Regression to L1&L2【最小二乘 --> 正则化】
[Scikit-learn] 1.1 Generalized Linear Models - Lasso Regression【L2相关“内容”,正则化分类固然也能够用】
[ML] Bayesian Linear Regression【增量在线学习的例子】
[Scikit-learn] 1.4 Support Vector Regression【依据最外边距】
[Scikit-learn] Theil-Sen Regression【抗噪能力较好】
# Discriminative Models
[Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax【转化为最大似然,也能够将参数“正则”】
[Scikit-learn] 1.1 Generalized Linear Models - Neural network models【MLP多层感知机】
[ML] Bayesian Logistic Regression【统计分类方法的区别】
[Scikit-learn] 1.4 Support Vector Regression【线性可分】
# Generative Models
Naive Bayes【参见 "贝叶斯机器学习"】
[ML] Linear Discriminant Analysis【ing】
[ML] Decision Tree & Ensembling Metholds【Bagging pk Boosting pk SVM】
[UFLDL] Dimensionality Reduction【广义降维方法概述】
[Scikit-learn] 2.3 Clustering - kmeans
[Scikit-learn] 2.3 Clustering - Spectral clustering
[Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise
[Scikit-learn] *2.3 Clustering - MeanShift
End.