本文收录在Linux运维企业架构实战系列html
前言:本篇博客是博主踩过无数坑,反复查阅资料,一步步搭建,操做完成后整理的我的心得,分享给你们~~~java
Hadoop是一个使用java编写的Apache开放源代码框架,它容许使用简单的编程模型跨大型计算机的大型数据集进行分布式处理。Hadoop框架工做的应用程序能够在跨计算机群集提供分布式存储和计算的环境中工做。Hadoop旨在从单一服务器扩展到数千台机器,每台机器都提供本地计算和存储。node
Hadoop框架包括如下四个模块:linux
咱们可使用下图来描述Hadoop框架中可用的这四个组件。web
自2012年以来,术语“Hadoop”一般不只指向上述基本模块,并且还指向能够安装在Hadoop之上或以外的其余软件包,例如Apache Pig,Apache Hive,Apache HBase,Apache火花等shell
(1)阶段1数据库
用户/应用程序能够经过指定如下项目向Hadoop(hadoop做业客户端)提交所需的进程:apache
(2)阶段2编程
而后,Hadoop做业客户端将做业(jar /可执行文件等)和配置提交给JobTracker,JobTracker负责将软件/配置分发到从站,调度任务和监视它们,向做业客户端提供状态和诊断信息。vim
(3)阶段3
不一样节点上的TaskTrackers根据MapReduce实现执行任务,并将reduce函数的输出存储到文件系统的输出文件中。
Hbase全称为Hadoop Database,即hbase是hadoop的数据库,是一个分布式的存储系统。Hbase利用Hadoop的HDFS做为其文件存储系统,利用Hadoop的MapReduce来处理Hbase中的海量数据。利用zookeeper做为其协调工具。
Client
Zookeeper
Master
RegionServer
HLog(WAL log)
Region
Memstore 与 storefile
本次集群搭建共三台机器,具体说明下:
主机名 | IP | 说明 |
hadoop01 | 192.168.10.101 | DataNode、NodeManager、ResourceManager、NameNode |
hadoop02 | 192.168.10.102 | DataNode、NodeManager、SecondaryNameNode |
hadoop03 | 192.168.10.106 | DataNode、NodeManager |
1
2
3
4
|
$
cat
/etc/redhat-release
CentOS Linux release 7.3.1611 (Core)
$
uname
-r
3.10.0-514.el7.x86_64
|
注:本集群内全部进程均由clsn用户启动;要在集群全部服务器都进行操做。
1
2
3
4
5
6
7
8
|
[along@hadoop01 ~]$ sestatus
SELinux status: disabled
[root@hadoop01 ~]$ iptables -F
[along@hadoop01 ~]$ systemctl status firewalld.service
● firewalld.service - firewalld - dynamic firewall daemon
Loaded: loaded (
/usr/lib/systemd/system/firewalld
.service; disabled; vendor preset: enabled)
Active: inactive (dead)
Docs:
man
:firewalld(1)
|
1
2
|
$
id
along
uid=1000(along) gid=1000(along)
groups
=1000(along)
|
1
2
3
4
5
6
7
|
$
cat
/etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.10.101 hadoop01
192.168.10.102 hadoop02
192.168.10.103 hadoop03
|
1
2
|
$ yum -y
install
ntpdate
$
sudo
ntpdate cn.pool.ntp.org
|
(1)生成密钥对,一直回车便可
1
|
[along@hadoop01 ~]$
ssh
-keygen
|
(2)保证每台服务器各自都有对方的公钥
1
2
3
4
5
6
7
8
9
10
|
---along用户
[along@hadoop01 ~]$
ssh
-copy-
id
-i ~/.
ssh
/id_rsa
.pub 127.0.0.1
[along@hadoop01 ~]$
ssh
-copy-
id
-i ~/.
ssh
/id_rsa
.pub hadoop01
[along@hadoop01 ~]$
ssh
-copy-
id
-i ~/.
ssh
/id_rsa
.pub hadoop02
[along@hadoop01 ~]$
ssh
-copy-
id
-i ~/.
ssh
/id_rsa
.pub hadoop03
---root用户
[along@hadoop01 ~]$
ssh
-copy-
id
-i ~/.
ssh
/id_rsa
.pub 127.0.0.1
[along@hadoop01 ~]$
ssh
-copy-
id
-i ~/.
ssh
/id_rsa
.pub hadoop01
[along@hadoop01 ~]$
ssh
-copy-
id
-i ~/.
ssh
/id_rsa
.pub hadoop02
[along@hadoop01 ~]$
ssh
-copy-
id
-i ~/.
ssh
/id_rsa
.pub hadoop03
|
注:要在集群全部服务器都进行操做
(3)验证无秘钥认证登陆
1
2
3
|
[along@hadoop02 ~]$
ssh
along@hadoop01
[along@hadoop02 ~]$
ssh
along@hadoop02
[along@hadoop02 ~]$
ssh
along@hadoop03
|
在三台机器上都须要操做
1
2
3
4
5
6
7
8
9
10
11
|
[root@hadoop01 ~]
# tar -xvf jdk-8u201-linux-x64.tar.gz -C /usr/local
[root@hadoop01 ~]
# chown along.along -R /usr/local/jdk1.8.0_201/
[root@hadoop01 ~]
# ln -s /usr/local/jdk1.8.0_201/ /usr/local/jdk
[root@hadoop01 ~]
# cat /etc/profile.d/jdk.sh
export
JAVA_HOME=
/usr/local/jdk
PATH=$JAVA_HOME
/bin
:$JAVA_HOME
/jre/bin
:$PATH
[root@hadoop01 ~]
# source /etc/profile.d/jdk.sh
[along@hadoop01 ~]$ java -version
java version
"1.8.0_201"
Java(TM) SE Runtime Environment (build 1.8.0_201-b09)
Java HotSpot(TM) 64-Bit Server VM (build 25.201-b09, mixed mode)
|
1
2
3
4
|
[root@hadoop01 ~]
# wget https://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-3.2.0/hadoop-3.2.0.tar.gz
[root@hadoop01 ~]
# tar -xvf hadoop-3.2.0.tar.gz -C /usr/local/
[root@hadoop01 ~]
# chown along.along -R /usr/local/hadoop-3.2.0/
[root@hadoop01 ~]
# ln -s /usr/local/hadoop-3.2.0/ /usr/local/hadoop
|
1
2
3
4
5
|
[along@hadoop01 ~]$
cd
/usr/local/hadoop/etc/hadoop/
[along@hadoop01 hadoop]$ vim hadoop-
env
.sh
export
JAVA_HOME=
/usr/local/jdk
export
HADOOP_HOME=
/usr/local/hadoop
export
HADOOP_CONF_DIR=${HADOOP_HOME}
/etc/hadoop
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
[along@hadoop01 hadoop]$ vim core-site.xml
<configuration>
<!-- 指定HDFS默认(namenode)的通讯地址 -->
<property>
<name>fs.defaultFS<
/name
>
<value>hdfs:
//hadoop01
:9000<
/value
>
<
/property
>
<!-- 指定hadoop运行时产生文件的存储路径 -->
<property>
<name>hadoop.tmp.
dir
<
/name
>
<value>
/data/hadoop/tmp
<
/value
>
<
/property
>
<
/configuration
>
[root@hadoop01 ~]
# mkdir /data/hadoop
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
[along@hadoop01 hadoop]$ vim hdfs-site.xml
<configuration>
<!-- 设置namenode的http通信地址 -->
<property>
<name>dfs.namenode.http-address<
/name
>
<value>hadoop01:50070<
/value
>
<
/property
>
<!-- 设置secondarynamenode的http通信地址 -->
<property>
<name>dfs.namenode.secondary.http-address<
/name
>
<value>hadoop02:50090<
/value
>
<
/property
>
<!-- 设置namenode存放的路径 -->
<property>
<name>dfs.namenode.name.
dir
<
/name
>
<value>
/data/hadoop/name
<
/value
>
<
/property
>
<!-- 设置hdfs副本数量 -->
<property>
<name>dfs.replication<
/name
>
<value>2<
/value
>
<
/property
>
<!-- 设置datanode存放的路径 -->
<property>
<name>dfs.datanode.data.
dir
<
/name
>
<value>
/data/hadoop/datanode
<
/value
>
<
/property
>
<property>
<name>dfs.permissions<
/name
>
<value>
false
<
/value
>
<
/property
>
<
/configuration
>
[root@hadoop01 ~]
# mkdir /data/hadoop/name -p
[root@hadoop01 ~]
# mkdir /data/hadoop/datanode -p
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
[along@hadoop01 hadoop]$ vim mapred-site.xml
<configuration>
<!-- 通知框架MR使用YARN -->
<property>
<name>mapreduce.framework.name<
/name
>
<value>yarn<
/value
>
<
/property
>
<property>
<name>mapreduce.application.classpath<
/name
>
<value>
/usr/local/hadoop/etc/hadoop
,
/usr/local/hadoop/share/hadoop/common/
*,
/usr/local/hadoop/share/hadoop/common/lib/
*,
/usr/local/hadoop/share/hadoop/hdfs/
*,
/usr/local/hadoop/share/hadoop/hdfs/lib/
*,
/usr/local/hadoop/share/hadoop/mapreduce/
*,
/usr/local/hadoop/share/hadoop/mapreduce/lib/
*,
/usr/local/hadoop/share/hadoop/yarn/
*,
/usr/local/hadoop/share/hadoop/yarn/lib/
*
<
/value
>
<
/property
>
<
/configuration
>
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
[along@hadoop01 hadoop]$ vim yarn-site.xml
<configuration>
<property>
<name>yarn.resourcemanager.
hostname
<
/name
>
<value>hadoop01<
/value
>
<
/property
>
<property>
<description>The http address of the RM web application.<
/description
>
<name>yarn.resourcemanager.webapp.address<
/name
>
<value>${yarn.resourcemanager.
hostname
}:8088<
/value
>
<
/property
>
<property>
<description>The address of the applications manager interface
in
the RM.<
/description
>
<name>yarn.resourcemanager.address<
/name
>
<value>${yarn.resourcemanager.
hostname
}:8032<
/value
>
<
/property
>
<property>
<description>The address of the scheduler interface.<
/description
>
<name>yarn.resourcemanager.scheduler.address<
/name
>
<value>${yarn.resourcemanager.
hostname
}:8030<
/value
>
<
/property
>
<property>
<name>yarn.resourcemanager.resource-tracker.address<
/name
>
<value>${yarn.resourcemanager.
hostname
}:8031<
/value
>
<
/property
>
<property>
<description>The address of the RM admin interface.<
/description
>
<name>yarn.resourcemanager.admin.address<
/name
>
<value>${yarn.resourcemanager.
hostname
}:8033<
/value
>
<
/property
>
<
/configuration
>
|
1
2
|
[along@hadoop01 hadoop]$
echo
'hadoop02'
>>
/usr/local/hadoop/etc/hadoop/masters
[along@hadoop01 hadoop]$
echo
'hadoop03 hadoop01'
>>
/usr/local/hadoop/etc/hadoop/slaves
|
启动脚本文件所有位于 /usr/local/hadoop/sbin 文件夹下:
(1)修改 start-dfs.sh stop-dfs.sh 文件添加:
1
2
3
4
5
6
|
[along@hadoop01 ~]$ vim
/usr/local/hadoop/sbin/start-dfs
.sh
[along@hadoop01 ~]$ vim
/usr/local/hadoop/sbin/stop-dfs
.sh
HDFS_DATANODE_USER=along
HADOOP_SECURE_DN_USER=hdfs
HDFS_NAMENODE_USER=along
HDFS_SECONDARYNAMENODE_USER=along
|
(2)修改start-yarn.sh 和 stop-yarn.sh文件添加:
1
2
3
4
5
|
[along@hadoop01 ~]$ vim
/usr/local/hadoop/sbin/start-yarn
.sh
[along@hadoop01 ~]$ vim
/usr/local/hadoop/sbin/stop-yarn
.sh
YARN_RESOURCEMANAGER_USER=along
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=along
|
1
2
|
[root@hadoop01 ~]
# chown -R along.along /usr/local/hadoop-3.2.0/
[root@hadoop01 ~]
# chown -R along.along /data/hadoop/
|
1
2
3
4
|
[root@hadoop01 ~]
# vim /etc/profile.d/hadoop.sh
[root@hadoop01 ~]
# cat /etc/profile.d/hadoop.sh
export
HADOOP_HOME=
/usr/local/hadoop
PATH=$HADOOP_HOME
/bin
:$HADOOP_HOME
/sbin
:$PATH
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
[root@hadoop01 ~]
# vim /data/hadoop/rsync.sh
#在集群内全部机器上都建立所须要的目录
for
i
in
hadoop02 hadoop03
do
sudo
rsync
-a
/data/hadoop
$i:
/data/
done
#复制hadoop配置到其余机器
for
i
in
hadoop02 hadoop03
do
sudo
rsync
-a
/usr/local/hadoop-3
.2.0
/etc/hadoop
$i:
/usr/local/hadoop-3
.2.0
/etc/
done
[root@hadoop01 ~]
# /data/hadoop/rsync.sh
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
[along@hadoop01 ~]$ hdfs namenode -
format
... ...
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop01
/192
.168.10.101
************************************************************/
[along@hadoop02 ~]$ hdfs namenode -
format
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop02
/192
.168.10.102
************************************************************/
[along@hadoop03 ~]$ hdfs namenode -
format
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop03
/192
.168.10.103
************************************************************/
|
(1)启动namenode、datanode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
[along@hadoop01 ~]$ start-dfs.sh
[along@hadoop02 ~]$ start-dfs.sh
[along@hadoop03 ~]$ start-dfs.sh
[along@hadoop01 ~]$ jps
4480 DataNode
4727 Jps
4367 NameNode
[along@hadoop02 ~]$ jps
4082 Jps
3958 SecondaryNameNode
3789 DataNode
[along@hadoop03 ~]$ jps
2689 Jps
2475 DataNode
|
(2)启动YARN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
[along@hadoop01 ~]$ start-yarn.sh
[along@hadoop02 ~]$ start-yarn.sh
[along@hadoop03 ~]$ start-yarn.sh
[along@hadoop01 ~]$ jps
4480 DataNode
4950 NodeManager
5447 NameNode
5561 Jps
4842 ResourceManager
[along@hadoop02 ~]$ jps
3958 SecondaryNameNode
4503 Jps
3789 DataNode
4367 NodeManager
[along@hadoop03 ~]$ jps
12353 Jps
12226 NodeManager
2475 DataNode
|
(1)网页访问:http://hadoop01:8088
该页面为ResourceManager 管理界面,在上面能够看到集群中的三台Active Nodes。
(2)网页访问:http://hadoop01:50070/dfshealth.html#tab-datanode
该页面为NameNode管理页面
到此hadoop集群已经搭建完毕!!!
1
2
3
4
|
[root@hadoop01 ~]
# wget https://mirrors.tuna.tsinghua.edu.cn/apache/hbase/1.4.9/hbase-1.4.9-bin.tar.gz
[root@hadoop01 ~]
# tar -xvf hbase-1.4.9-bin.tar.gz -C /usr/local/
[root@hadoop01 ~]
# chown -R along.along /usr/local/hbase-1.4.9/
[root@hadoop01 ~]
# ln -s /usr/local/hbase-1.4.9/ /usr/local/hbase
|
注:当前时间2018.03.08,hbase-2.1版本有问题;也多是我配置的问题,hbase会启动失败;因此,我降级到了hbase-1.4.9版本。
1
2
3
4
|
[root@hadoop01 ~]
# cd /usr/local/hbase/conf/
[root@hadoop01 conf]
# vim hbase-env.sh
export
JAVA_HOME=
/usr/local/jdk
export
HBASE_CLASSPATH=
/usr/local/hbase/conf
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
[root@hadoop01 conf]
# vim hbase-site.xml
<configuration>
<property>
<name>hbase.rootdir<
/name
>
<!-- hbase存放数据目录 -->
<value>hdfs:
//hadoop01
:9000
/hbase/hbase_db
<
/value
>
<!-- 端口要和Hadoop的fs.defaultFS端口一致-->
<
/property
>
<property>
<name>hbase.cluster.distributed<
/name
>
<!-- 是否分布式部署 -->
<value>
true
<
/value
>
<
/property
>
<property>
<name>hbase.zookeeper.quorum<
/name
>
<!-- zookooper 服务启动的节点,只能为奇数个 -->
<value>hadoop01,hadoop02,hadoop03<
/value
>
<
/property
>
<property>
<!--zookooper配置、日志等的存储位置,必须为以存在 -->
<name>hbase.zookeeper.property.dataDir<
/name
>
<value>
/data/hbase/zookeeper
<
/value
>
<
/property
>
<property>
<!--hbase master -->
<name>hbase.master<
/name
>
<value>hadoop01<
/value
>
<
/property
>
<property>
<!--hbase web 端口 -->
<name>hbase.master.info.port<
/name
>
<value>16666<
/value
>
<
/property
>
<
/configuration
>
|
注:zookeeper有这样一个特性:
1
2
3
4
|
[root@hadoop01 conf]
# vim regionservers
hadoop01
hadoop02
hadoop03
|
1
2
3
|
[root@hadoop01 ~]
# vim /etc/profile.d/hbase.sh
export
HBASE_HOME=
/usr/local/hbase
PATH=$HBASE_HOME
/bin
:$PATH
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
[root@hadoop01 ~]
# mkdir -p /data/hbase/zookeeper
[root@hadoop01 ~]
# vim /data/hbase/rsync.sh
#在集群内全部机器上都建立所须要的目录
for
i
in
hadoop02 hadoop03
do
sudo
rsync
-a
/data/hbase
$i:
/data/
sudo
scp
-p
/etc/profile
.d
/hbase
.sh $i:
/etc/profile
.d/
done
#复制hbase配置到其余机器
for
i
in
hadoop02 hadoop03
do
sudo
rsync
-a
/usr/local/hbase-2
.1.3 $i:
/usr/local/
done
[root@hadoop01 conf]
# chown -R along.along /data/hbase
[root@hadoop01 ~]
# /data/hbase/rsync.sh
hbase.sh 100% 62 0.1KB
/s
00:00
hbase.sh 100% 62 0.1KB
/s
00:00
|
注:只需在hadoop01服务器上操做便可。
(1)启动
1
2
3
4
5
|
[along@hadoop01 ~]$ start-hbase.sh
hadoop03: running zookeeper, logging to
/usr/local/hbase/logs/hbase-along-zookeeper-hadoop03
.out
hadoop01: running zookeeper, logging to
/usr/local/hbase/logs/hbase-along-zookeeper-hadoop01
.out
hadoop02: running zookeeper, logging to
/usr/local/hbase/logs/hbase-along-zookeeper-hadoop02
.out
... ...
|
(2)验证
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
---主hbase
[along@hadoop01 ~]$ jps
4480 DataNode
23411 HQuorumPeer
# zookeeper进程
4950 NodeManager
24102 Jps
5447 NameNode
23544 HMaster
# hbase master进程
4842 ResourceManager
23711 HRegionServer
---2个从
[along@hadoop02 ~]$ jps
12948 HRegionServer
# hbase slave进程
3958 SecondaryNameNode
13209 Jps
12794 HQuorumPeer
# zookeeper进程
3789 DataNode
4367 NodeManager
[along@hadoop03 ~]$ jps
12226 NodeManager
19559 Jps
19336 HRegionServer
# hbase slave进程
19178 HQuorumPeer
# zookeeper进程
2475 DataNode
|
名称 |
命令表达式 |
建立表 |
create '表名称','列簇名称1','列簇名称2'....... |
添加记录 |
put '表名称', '行名称','列簇名称:','值' |
查看记录 |
get '表名称','行名称' |
查看表中的记录总数 |
count '表名称' |
删除记录 |
delete '表名',行名称','列簇名称' |
删除表 |
①disable '表名称' ②drop '表名称' |
查看全部记录 |
scan '表名称' |
查看某个表某个列中全部数据 |
scan '表名称',['列簇名称:'] |
更新记录 |
即重写一遍进行覆盖 |
(1)启动hbase 客户端
1
2
3
4
5
6
7
8
9
10
11
12
|
[along@hadoop01 ~]$ hbase shell
#须要等待一些时间
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding
in
[jar:
file
:
/usr/local/hbase-1
.4.9
/lib/slf4j-log4j12-1
.7.10.jar!
/org/slf4j/impl/StaticLoggerBinder
.class]
SLF4J: Found binding
in
[jar:
file
:
/usr/local/hadoop-3
.2.0
/share/hadoop/common/lib/slf4j-log4j12-1
.7.25.jar!
/org/slf4j/impl/StaticLoggerBinder
.class]
SLF4J: See http:
//www
.slf4j.org
/codes
.html
#multiple_bindings for an explanation.
SLF4J: Actual binding is of
type
[org.slf4j.impl.Log4jLoggerFactory]
HBase Shell
Use
"help"
to get list of supported commands.
Use
"exit"
to quit this interactive shell.
Version 1.4.9, rd625b212e46d01cb17db9ac2e9e927fdb201afa1, Wed Dec 5 11:54:10 PST 2018
hbase(main):001:0>
|
(2)查询集群状态
1
2
|
hbase(main):001:0> status
1 active master, 0 backup masters, 3 servers, 0 dead, 0.6667 average load
|
(3)查询hive版本
1
2
|
hbase(main):002:0> version
1.4.9, rd625b212e46d01cb17db9ac2e9e927fdb201afa1, Wed Dec 5 11:54:10 PST 2018
|
(1)建立一个demo表,包含 id和info 两个列簇
1
2
3
4
|
hbase(main):001:0> create
'demo'
,
'id'
,
'info'
0 row(s)
in
23.2010 seconds
=> Hbase::Table - demo
|
(2)得到表的描述
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
hbase(main):002:0> list
TABLE
demo
1 row(s)
in
0.6380 seconds
=> [
"demo"
]
---获取详细描述
hbase(main):003:0> describe
'demo'
Table demo is ENABLED
demo
COLUMN FAMILIES DESCRIPTION
{NAME =>
'id'
, BLOOMFILTER =>
'ROW'
, VERSIONS =>
'1'
, IN_MEMORY =>
'false'
, KEEP_DELETED_CELLS =>
'FALSE'
, DATA_BLOCK_ENCODING =>
'NONE'
, TTL =>
'FOREVER'
, COMPRESSION =>
'NONE'
, MIN_VERSIONS => '
0
', BLOCKCACHE => '
true
', BLOCKSIZE => '
65536
', REPLICATION_SCOPE => '
0'}
{NAME =>
'info'
, BLOOMFILTER =>
'ROW'
, VERSIONS =>
'1'
, IN_MEMORY =>
'false'
, KEEP_DELETED_CELLS =
>
'FALSE'
, DATA_BLOCK_ENCODING =>
'NONE'
, TTL =>
'FOREVER'
, COMPRESSION =>
'NONE'
, MIN_VERSIONS =>
'0'
, BLOCKCACHE =>
'true'
, BLOCKSIZE =>
'65536'
, REPLICATION_SCOPE =>
'0'
}
2 row(s)
in
0.3500 seconds
|
(3)删除一个列簇
注:任何删除操做,都须要先disable表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
hbase(main):004:0> disable
'demo'
0 row(s)
in
2.5930 seconds
hbase(main):006:0> alter
'demo'
,{NAME=>
'info'
,METHOD=>
'delete'
}
Updating all regions with the new schema...
1
/1
regions updated.
Done.
0 row(s)
in
4.3410 seconds
hbase(main):007:0> describe
'demo'
Table demo is DISABLED
demo
COLUMN FAMILIES DESCRIPTION
{NAME =>
'id'
, BLOOMFILTER =>
'ROW'
, VERSIONS =>
'1'
, IN_MEMORY =>
'false'
, KEEP_DELETED_CELLS => 'F
ALSE
', DATA_BLOCK_ENCODING => '
NONE
', TTL => '
FOREVER
', COMPRESSION => '
NONE
', MIN_VERSIONS => '
0',
BLOCKCACHE =>
'true'
, BLOCKSIZE =>
'65536'
, REPLICATION_SCOPE =>
'0'
}
1 row(s)
in
0.1510 seconds
|
(4)删除一个表
要先disable表,再drop
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
hbase(main):008:0> list
TABLE
demo
1 row(s)
in
0.1010 seconds
=> [
"demo"
]
hbase(main):009:0> disable
'demo'
0 row(s)
in
0.0480 seconds
hbase(main):010:0> is_disabled
'demo'
#判断表是否disable
true
0 row(s)
in
0.0210 seconds
hbase(main):013:0> drop
'demo'
0 row(s)
in
2.3270 seconds
hbase(main):014:0> list
#已经删除成功
TABLE
0 row(s)
in
0.0250 seconds
=> []
hbase(main):015:0> is_enabled
'demo'
#查询是否存在demo表
ERROR: Unknown table demo!
|
(1)插入数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
hbase(main):024:0> create
'demo'
,
'id'
,
'info'
0 row(s)
in
10.0720 seconds
=> Hbase::Table - demo
hbase(main):025:0> is_enabled
'demo'
true
0 row(s)
in
0.1930 seconds
hbase(main):030:0> put
'demo'
,
'example'
,
'id:name'
,
'along'
0 row(s)
in
0.0180 seconds
hbase(main):039:0> put
'demo'
,
'example'
,
'id:sex'
,
'male'
0 row(s)
in
0.0860 seconds
hbase(main):040:0> put
'demo'
,
'example'
,
'id:age'
,
'24'
0 row(s)
in
0.0120 seconds
hbase(main):041:0> put
'demo'
,
'example'
,
'id:company'
,
'taobao'
0 row(s)
in
0.3840 seconds
hbase(main):042:0> put
'demo'
,
'taobao'
,
'info:addres'
,
'china'
0 row(s)
in
0.1910 seconds
hbase(main):043:0> put
'demo'
,
'taobao'
,
'info:company'
,
'alibaba'
0 row(s)
in
0.0300 seconds
hbase(main):044:0> put
'demo'
,
'taobao'
,
'info:boss'
,
'mayun'
0 row(s)
in
0.1260 seconds
|
(2)获取demo表的数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
hbase(main):045:0> get
'demo'
,
'example'
COLUMN CELL
id
:age timestamp=1552030411620, value=24
id
:company timestamp=1552030467196, value=taobao
id
:name timestamp=1552030380723, value=along
id
:sex timestamp=1552030392249, value=male
1 row(s)
in
0.8850 seconds
hbase(main):046:0> get
'demo'
,
'taobao'
COLUMN CELL
info:addres timestamp=1552030496973, value=china
info:boss timestamp=1552030532254, value=mayun
info:company timestamp=1552030520028, value=alibaba
1 row(s)
in
0.2500 seconds
hbase(main):047:0> get
'demo'
,
'example'
,
'id'
COLUMN CELL
id
:age timestamp=1552030411620, value=24
id
:company timestamp=1552030467196, value=taobao
id
:name timestamp=1552030380723, value=along
id
:sex timestamp=1552030392249, value=male
1 row(s)
in
0.3150 seconds
hbase(main):048:0> get
'demo'
,
'example'
,
'info'
COLUMN CELL
0 row(s)
in
0.0200 seconds
hbase(main):049:0> get
'demo'
,
'taobao'
,
'id'
COLUMN CELL
0 row(s)
in
0.0410 seconds
hbase(main):053:0> get
'demo'
,
'taobao'
,
'info'
COLUMN CELL
info:addres timestamp=1552030496973, value=china
info:boss timestamp=1552030532254, value=mayun
info:company timestamp=1552030520028, value=alibaba
1 row(s)
in
0.0240 seconds
hbase(main):055:0> get
'demo'
,
'taobao'
,
'info:boss'
COLUMN CELL
info:boss timestamp=1552030532254, value=mayun
1 row(s)
in
0.1810 seconds
|
(3)更新一条记录
1
2
3
4
5
6
7
|
hbase(main):056:0> put
'demo'
,
'example'
,
'id:age'
,
'88'
0 row(s)
in
0.1730 seconds
hbase(main):057:0> get
'demo'
,
'example'
,
'id:age'
COLUMN CELL
id
:age timestamp=1552030841823, value=88
1 row(s)
in
0.1430 seconds
|
(4)获取时间戳数据
你们应该看到timestamp这个标记
1
2
3
4
5
6
7
8
9
|
hbase(main):059:0> get
'demo'
,
'example'
,{COLUMN=>
'id:age'
,TIMESTAMP=>1552030841823}
COLUMN CELL
id
:age timestamp=1552030841823, value=88
1 row(s)
in
0.0200 seconds
hbase(main):060:0> get
'demo'
,
'example'
,{COLUMN=>
'id:age'
,TIMESTAMP=>1552030411620}
COLUMN CELL
id
:age timestamp=1552030411620, value=24
1 row(s)
in
0.0930 seconds
|
(5)全表显示
1
2
3
4
5
6
7
8
9
10
|
hbase(main):061:0> scan
'demo'
ROW COLUMN+CELL
example column=
id
:age, timestamp=1552030841823, value=88
example column=
id
:company, timestamp=1552030467196, value=taobao
example column=
id
:name, timestamp=1552030380723, value=along
example column=
id
:sex, timestamp=1552030392249, value=male
taobao column=info:addres, timestamp=1552030496973, value=china
taobao column=info:boss, timestamp=1552030532254, value=mayun
taobao column=info:company, timestamp=1552030520028, value=alibaba
2 row(s)
in
0.3880 seconds
|
(6)删除id为example的'id:age'字段
1
2
3
4
5
6
7
8
|
hbase(main):062:0> delete
'demo'
,
'example'
,
'id:age'
0 row(s)
in
1.1360 seconds
hbase(main):063:0> get
'demo'
,
'example'
COLUMN CELL
id
:company timestamp=1552030467196, value=taobao
id
:name timestamp=1552030380723, value=along
id
:sex timestamp=1552030392249, value=male
|
(7)删除整行
1
2
3
4
5
6
|
hbase(main):070:0> deleteall
'demo'
,
'taobao'
0 row(s)
in
1.8140 seconds
hbase(main):071:0> get
'demo'
,
'taobao'
COLUMN CELL
0 row(s)
in
0.2200 seconds
|
(8)给example这个id增长'id:age'字段,并使用counter实现递增
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
hbase(main):072:0> incr
'demo'
,
'example'
,
'id:age'
COUNTER VALUE = 1
0 row(s)
in
3.2200 seconds
hbase(main):073:0> get
'demo'
,
'example'
,
'id:age'
COLUMN CELL
id
:age timestamp=1552031388997, value=\x00\x00\x00\x00\x00\x00\x00\x01
1 row(s)
in
0.0280 seconds
hbase(main):074:0> incr
'demo'
,
'example'
,
'id:age'
COUNTER VALUE = 2
0 row(s)
in
0.0340 seconds
hbase(main):075:0> incr
'demo'
,
'example'
,
'id:age'
COUNTER VALUE = 3
0 row(s)
in
0.0420 seconds
hbase(main):076:0> get
'demo'
,
'example'
,
'id:age'
COLUMN CELL
id
:age timestamp=1552031429912, value=\x00\x00\x00\x00\x00\x00\x00\x03
1 row(s)
in
0.0690 seconds
hbase(main):077:0> get_counter
'demo'
,
'example'
,
'id:age'
#获取当前count值
COUNTER VALUE = 3
|
(9)清空整个表
1
2
3
4
5
|
hbase(main):078:0> truncate
'demo'
Truncating
'demo'
table (it may take a
while
):
- Disabling table...
- Truncating table...
0 row(s)
in
33.0820 seconds
|
能够看出hbase是先disable掉该表,而后drop,最后从新create该表来实现清空该表。
转自https://www.cnblogs.com/along21/