深度学习模型转换

前言 当用户基于各种原因学习并使用了一种框架的时候,常常会发现应用或者再训练的场景改变了,比如用户用 Caffe 训练好了一个图像识别的模型,但是生产环境是使用 TensorFlow 做预测。再比如某机构主要以TensorFlow作为基础的深度学习开发框架,现在有一个深度算法项目,需要将其部署在移动设备上,并希望使用速度较优的ncnn前向框架,以观测变现等等。传统地我们可能需要用tf重写Caffe
相关文章
相关标签/搜索