NeurIPS2019:3D点云实例分割的新框架3D-BoNet

    导读   机器能够理解3D场景是自动驾驶,增强现实和机器人技术的基本必要条件。3D几何数据(例如点云)的核心问题包括语义分割,对象检测和实例分割。在这些问题中,实例分割仅在文献中才开始解决。主要的障碍是点云本质上是无序的,无结构的和不均匀的。广泛使用的卷积神经网络要求对3D点云进行体素化,从而导致高昂的计算和存储成本。第一个直接解决3D实例分割的神经算法是SGPN,该算法通过相似矩阵学习对
相关文章
相关标签/搜索