MSCKF理论推导与代码解析

点击上方“3D视觉工坊”,选择“星标” 干货第一时间送达 在SLAM后端中,主要有两种主流方法用于优化:基于滤波的方法和基于非线性的方法。基于滤波的方法主要有MSCKF、S-MSCKF、ROVIO等,基于非线性的方法主要有OKVIS、VINS-MONO、VINS-Fusion等。在这一节,主要分析S-MSCKF的理论推导和代码解读。 一、扩展卡尔曼滤波(Extended Kalman Filter
相关文章
相关标签/搜索