深度学习卷积概述(1)

一、概述
卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。在这篇文章中,我们将分解卷积操作的机制,逐步将其与标准神经网络联系起来,探索它们是如何建立起强大的视觉层次结构,并最终成为强大的图像特征提取器的。

二、什么是卷积
你可以把卷积想象成一种混合信息的手段。想象一下装满信息的两个桶,我们把它们倒入一个桶中并且通过某种规则搅拌搅拌。也就是说卷积是一种混合两种信息的流程。
卷积也可以形式化地描述,事实上,它就是一种数学运算,跟减加乘除没有本质的区别。虽然这种运算本身很复杂,但它非常有助于简化更复杂的表达式。在物理和工程上,卷积被广泛地用于化简等式——等会儿简单地形式化描述卷积之后——我们将把这些领域的思想和深度学习联系起来,以加深对卷积的理解。但现在我们先从实用的角度理解卷积。

我们如何对图像应用卷积
当我们在图像上应用卷积时,我们在两个维度上执行卷积——水平和竖直方向。我们混合两桶信息:第一桶是输入的图像,由三个矩阵构成——RGB 三通道,其中每个元素都是 0 到 255 之间的一个整数。第二个桶是卷积核(kernel),单个浮点数矩阵。可以将卷积核的大小和模式想象成一个搅拌图像的方法。卷积核的输出是一幅修改后的图像,在深度学习中经常被称作 feature map。对每个颜色通道都有一个 feature map。

在这里插入图片描述

边缘检测卷积核的效果
这是怎么做到的呢,我们现在演示一下如何通过卷积来混合这两种信息。一种方法是从输入图片中取出一个与卷积核大小相同的区块——这里假设图片为 100×100,卷积核大小为 3×3,那么我们取出的区块大小就是 3×3——然后对每对相同位置的元素执行乘法后求和(不同于矩阵乘法,却类似向量内积,这里是两个相同大小的矩阵的「点乘」)。乘积的和就生成了 feature map 中的一个像素。当一个像素计算完毕后,移动一个像素取下一个区块执行相同的运算。当无法再移动取得新区块的时候对 feature map 的计算就结束了。这个流程可以用如下的动画演示:

在这里插入图片描述

RAM 是输入图片,Buffer 是 feature map,你可能注意到这里有个正规化因子 m,这里 m 的值为 kernel 的大小 9;这是为了保证输入图像和 feature map 的亮度相同。
随着卷积神经网络的训练,这些卷积核为了得到有用信息,在图像或 feature map 上的过滤工作会变得越来越好。这个过程是自动的,称作特征学习。特征学习自动适配新的任务:我们只需在新数据上训练一下自动找出新的过滤器就行了。通常卷积神经网络并不学习单一的核,而是同时学习多层级的多个核。比如一个 32x16x16 的核用到 256×256 的图像上去会产生 32 个 241×241(latex.png)的 feature map。所以自动地得到了 32 个有用的新特征。这些特征可以作为下个核的输入。一旦学习到了多级特征,我们简单地将它们传给一个全连接的简单的神经网络,由它完成分类。

三、总结 本文中我们带大家初步走进了卷积的世界,这里提到了特征选择算法。特征选择顾名思义,是根据一堆数据提取它们共同的最显著特征,然后达到从同类数据中快速分辨出所提取特征的目的,其算法实现过程可以使用Matlab模拟,同时有一个评分的过程。 下面我们将带领大家继续深入研究卷积。