JavaShuo
栏目
标签
#Paper Reading# xDeepFM:Combining Explicit and Implicit Feature Interactions for Recommender Systems
时间 2020-12-30
原文
原文链接
论文题目: xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 论文地址: https://dl.acm.org/citation.cfm?id=3220023 论文发表于: KDD 2018(CCF A类会议) 论文大体内容: 本文主要介绍了DeepFM模型的变种——xDeep
>>阅读原文<<
相关文章
1.
CTR预估 论文精读(十)--xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
2.
#Paper Reading# Wide & Deep Learning for Recommender Systems
3.
Paper-Reading
4.
Paper Reading:Wide & Deep Learning for Recommender Systems
5.
#Paper Reading# Personalized Context-aware Re-ranking for E-commerce Recommender Systems
6.
#Paper Reading# RippleNet: Propagating User Preferences on the KG for Recommender Systems
7.
#Paper Reading# Deep Learning Recommendation Model for Personalization and Recommendation Systems
8.
Wide & Deep Learning for Recommender Systems
9.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
10.
论文笔记 - Wide & Deep Learning for Recommender Systems
更多相关文章...
•
Swift for 循环
-
Swift 教程
•
Scala for循环
-
Scala教程
•
RxJava操作符(七)Conditional and Boolean
•
Kotlin学习(二)基本类型
相关标签/搜索
explicit
recommender
interactions
implicit
systems
reading
feature
paper
feature...setfeature
action.....and
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
升级Gradle后报错Gradle‘s dependency cache may be corrupt (this sometimes occurs
2.
Smarter, Not Harder
3.
mac-2019-react-native 本地环境搭建(xcode-11.1和android studio3.5.2中Genymotion2.12.1 和VirtualBox-5.2.34 )
4.
查看文件中关键字前后几行的内容
5.
XXE萌新进阶全攻略
6.
Installation failed due to: ‘Connection refused: connect‘安卓studio端口占用
7.
zabbix5.0通过agent监控winserve12
8.
IT行业UI前景、潜力如何?
9.
Mac Swig 3.0.12 安装
10.
Windows上FreeRDP-WebConnect是一个开源HTML5代理,它提供对使用RDP的任何Windows服务器和工作站的Web访问
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
CTR预估 论文精读(十)--xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
2.
#Paper Reading# Wide & Deep Learning for Recommender Systems
3.
Paper-Reading
4.
Paper Reading:Wide & Deep Learning for Recommender Systems
5.
#Paper Reading# Personalized Context-aware Re-ranking for E-commerce Recommender Systems
6.
#Paper Reading# RippleNet: Propagating User Preferences on the KG for Recommender Systems
7.
#Paper Reading# Deep Learning Recommendation Model for Personalization and Recommendation Systems
8.
Wide & Deep Learning for Recommender Systems
9.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
10.
论文笔记 - Wide & Deep Learning for Recommender Systems
>>更多相关文章<<