JavaShuo
栏目
标签
#Paper Reading# RippleNet: Propagating User Preferences on the KG for Recommender Systems
时间 2020-12-30
原文
原文链接
论文题目: RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems 论文地址: https://dl.acm.org/citation.cfm?id=3271739 论文发表于: CIKM 2018(CCF B类会议) 论文大体内容: 本文主要介绍了一种通过引入Knowledge
>>阅读原文<<
相关文章
1.
阅读笔记--RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
2.
RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems简析
3.
#Paper Reading# Wide & Deep Learning for Recommender Systems
4.
Paper Reading:Wide & Deep Learning for Recommender Systems
5.
#Paper Reading# Personalized Context-aware Re-ranking for E-commerce Recommender Systems
6.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
7.
#Paper Reading# xDeepFM:Combining Explicit and Implicit Feature Interactions for Recommender Systems
8.
Paper Notes: Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommenda
9.
Side Information-Knowledge Graph Convolutional Networks for Recommender Systems阅读笔记
10.
#Paper Reading# On the Measure of Intelligence
更多相关文章...
•
Eclipse 首选项(Preferences)
-
Eclipse 教程
•
Swift for 循环
-
Swift 教程
•
RxJava操作符(一)Creating Observables
•
三篇文章了解 TiDB 技术内幕 —— 说计算
相关标签/搜索
recommender
ripplenet
preferences
systems
propagating
reading
paper
user
mysql..the
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
说说Python中的垃圾回收机制?
2.
蚂蚁金服面试分享,阿里的offer真的不难,3位朋友全部offer
3.
Spring Boot (三十一)——自定义欢迎页及favicon
4.
Spring Boot核心架构
5.
IDEA创建maven web工程
6.
在IDEA中利用maven创建java项目和web项目
7.
myeclipse新导入项目基本配置
8.
zkdash的安装和配置
9.
什么情况下会导致Python内存溢出?要如何处理?
10.
CentoOS7下vim输入中文
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
阅读笔记--RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
2.
RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems简析
3.
#Paper Reading# Wide & Deep Learning for Recommender Systems
4.
Paper Reading:Wide & Deep Learning for Recommender Systems
5.
#Paper Reading# Personalized Context-aware Re-ranking for E-commerce Recommender Systems
6.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
7.
#Paper Reading# xDeepFM:Combining Explicit and Implicit Feature Interactions for Recommender Systems
8.
Paper Notes: Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommenda
9.
Side Information-Knowledge Graph Convolutional Networks for Recommender Systems阅读笔记
10.
#Paper Reading# On the Measure of Intelligence
>>更多相关文章<<