Wide & Deep Learning for Recommender Systems

ABSTRACT 通过特征的向量积(cross-product)对特征交叉的记忆具有可解释性,而泛化又需要更多的特征工程。而DNN通过对稀疏特征学习低维稠密的embedding表示对未出现的特征组合具有良好的泛化性能。但是,当用户物品关系比较稀疏,维度又比较高时,DNN容易过度泛化,推荐一些不相干的物品。文中提出Wide&Deep 学习,同时训练wide 部分和dnn,将记忆性和泛化性结合在一起。
相关文章
相关标签/搜索