【图解AI:动图】各类类型的卷积,你认全了吗?

卷积(convolution)是深度学习中很是有用的计算操做,主要用于提取图像的特征。在近几年来深度学习快速发展的过程当中,卷积从标准卷积演变出了反卷积、可分离卷积、分组卷积等各类类型,以适应于不一样的场景,接下来一块儿来认识它们吧。算法

1、卷积的基本属性
卷积核(Kernel):卷积操做的感觉野,直观理解就是一个滤波矩阵,广泛使用的卷积核大小为3×三、5×5等;
步长(Stride):卷积核遍历特征图时每步移动的像素,如步长为1则每次移动1个像素,步长为2则每次移动2个像素(即跳过1个像素),以此类推;
填充(Padding):处理特征图边界的方式,通常有两种,一种是对边界外彻底不填充,只对输入像素执行卷积操做,这样会使输出特征图的尺寸小于输入特征图尺寸;另外一种是对边界外进行填充(通常填充为0),再执行卷积操做,这样可以使输出特征图的尺寸与输入特征图的尺寸一致;
通道(Channel):卷积层的通道数(层数)。
以下图是一个卷积核(kernel)为3×三、步长(stride)为一、填充(padding)为1的二维卷积:
微信

2、卷积的计算过程
卷积的计算过程很是简单,当卷积核在输入图像上扫描时,将卷积核与输入图像中对应位置的数值逐个相乘,最后汇总求和,就获得该位置的卷积结果。不断移动卷积核,就可算出各个位置的卷积结果。以下图:
 
3、卷积的各类类型
卷积如今已衍生出了各类类型,包括标准卷积、反卷积、可分离卷积、分组卷积等等,下面逐一进行介绍。
一、标准卷积
(1)二维卷积(单通道卷积版本)(2D Convolution: the single channel version)
只有一个通道的卷积。
以下图是一个卷积核(kernel)为3×三、步长(stride)为一、填充(padding)为0的卷积:
 
(2)二维卷积(多通道版本)(2D Convolution: the multi-channel version)
拥有多个通道的卷积,例如处理彩色图像时,分别对R, G, B这3个层处理的3通道卷积,以下图:
 
再将三个通道的卷积结果进行合并(通常采用元素相加),获得卷积后的结果,以下图:
 
(3)三维卷积(3D Convolution)
卷积有三个维度(高度、宽度、通道),沿着输入图像的3个方向进行滑动,最后输出三维的结果,以下图:
 
(4)1x1卷积(1 x 1 Convolution)
当卷积核尺寸为1x1时的卷积,也即卷积核变成只有一个数字。以下图:
 
从上图能够看出,1x1卷积的做用在于能有效地减小维度,下降计算的复杂度。1x1卷积在GoogLeNet网络结构中普遍使用。网络

二、反卷积(转置卷积)(Deconvolution / Transposed Convolution)
卷积是对输入图像提取出特征(可能尺寸会变小),而所谓的“反卷积”即是进行相反的操做。但这里说是“反卷积”并不严谨,由于并不会彻底还原到跟输入图像同样,通常是还原后的尺寸与输入图像一致,主要用于向上采样。从数学计算上看,“反卷积”至关因而将卷积核转换为稀疏矩阵后进行转置计算,所以,也被称为“转置卷积”
以下图,在2x2的输入图像上应用步长为一、边界全0填充的3x3卷积核,进行转置卷积(反卷积)计算,向上采样后输出的图像大小为4x4
 
三、空洞卷积(膨胀卷积)(Dilated Convolution / Atrous Convolution)
为扩大感觉野,在卷积核里面的元素之间插入空格来“膨胀”内核,造成“空洞卷积”(或称膨胀卷积),并用膨胀率参数L表示要扩大内核的范围,即在内核元素之间插入L-1个空格。当L=1时,则内核元素之间没有插入空格,变为标准卷积。
以下图为膨胀率L=2的空洞卷积:
 
四、可分离卷积(Separable Convolutions)
(1)空间可分离卷积(Spatially Separable Convolutions)
空间可分离卷积是将卷积核分解为两项独立的核分别进行操做。一个3x3的卷积核分解以下图:
 
分解后的卷积计算过程以下图,先用3x1的卷积核做横向扫描计算,再用1x3的卷积核做纵向扫描计算,最后获得结果。采用可分离卷积的计算量比标准卷积要少。
 
(2)深度可分离卷积(Depthwise Separable Convolutions)
深度可分离卷积由两步组成:深度卷积和1x1卷积。
首先,在输入层上应用深度卷积。以下图,使用3个卷积核分别对输入层的3个通道做卷积计算,再堆叠在一块儿。
 
再使用1x1的卷积(3个通道)进行计算,获得只有1个通道的结果
 
重复屡次1x1的卷积操做(以下图为128次),则最后便会获得一个深度的卷积结果。
 
完整的过程以下:
 
五、扁平卷积(Flattened convolutions)
扁平卷积是将标准卷积核拆分为3个1x1的卷积核,而后再分别对输入层进行卷积计算。这种方式,跟前面的“空间可分离卷积”相似,以下图:
 
六、分组卷积(Grouped Convolution)
2012年,AlexNet论文中最早提出来的概念,当时主要为了解决GPU显存不足问题,将卷积分组后放到两个GPU并行执行。
在分组卷积中,卷积核被分红不一样的组,每组负责对相应的输入层进行卷积计算,最后再进行合并。以下图,卷积核被分红先后两个组,前半部分的卷积组负责处理前半部分的输入层,后半部分的卷积组负责处理后半部分的输入层,最后将结果合并组合。
 
七、混洗分组卷积(Shuffled Grouped Convolution)
在分组卷积中,卷积核被分红多个组后,输入层卷积计算的结果仍按照原先的顺序进行合并组合,这就阻碍了模型在训练期间特征信息在通道组之间流动,同时还削弱了特征表示。而混洗分组卷积,即是将分组卷积后的计算结果混合交叉在一块儿输出。
以下图,在第一层分组卷积(GConv1)计算后,获得的特征图先进行拆组,再混合交叉,造成新的结果输入到第二层分组卷积(GConv2)中:分布式

欢迎关注本人的微信公众号“大数据与人工智能Lab”(BigdataAILab),获取更多信息ide

 

推荐相关阅读函数

一、AI 实战系列oop

二、大话深度学习系列学习

三、图解 AI 系列大数据

四、AI 杂谈人工智能

五、大数据超详细系列

相关文章
相关标签/搜索