机器学习笔记(4)——支持向量机(SVM)

SVM 支持向量机 SupportVectorMachine 1. 概念 SVM是个二分类的分类模型。也就是说,给定一个包含正例和反例(正样本点和负样本点)的样本集合,支持向量机的目的是寻找一个超平面来对样本进行分割,把样本中的正例和反例用超平面分开,但是不是简单地分看,其原则是使正例和反例之间的间隔最大。学习的目标是在特征空间中找到一个分类超平面wx+b=0,分类面由法向量w和截距b决定。分类超
相关文章
相关标签/搜索