机器学习:对决策树剪枝

         昨天推送中介绍了决策树的基本思想,包括从众多特征中找出最佳的分裂点,刚开始大家都是用选择这个特征后带来的信息增益为基本方法,后来发现它存在一个严重的bug,因此提出来了信息增益率(即还要除以分裂出来的那些节点对应的自身熵的和),再后来,又提出来一个与熵概念类似的基尼系数,根据这些理论和训练数据可以构建出一颗大树了。但是这颗大树的泛化能力一般,需要进行剪枝操作才能提升泛化能力,那么
相关文章
相关标签/搜索