PaddlePaddle2.0 数据加载及处理

PaddlePaddle2.0 数据加载及处理

你们好这里是小白三岁,三岁白话系列第7话来啦!html

AIStudio项目地址:

https://aistudio.baidu.com/aistudio/projectdetail/1349615python

参考文档:

Paddle官网:https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc/tutorial/quick_start/getting_started/getting_started.html#id3web

paddle API查看地址:https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/api/index_cn.html编程

CSDN地址

三岁白话系列CSDN:https://blog.csdn.net/weixin_45623093/category_10616602.htmlapi

paddlepaddle社区号:https://blog.csdn.net/PaddlePaddle框架

# 导入paddle并查看版本
import paddle
print(paddle.__version__)
2.0.0-rc1

数据集

分为框架自带数据集和自定义(本身上传)的数据集dom

数据的处理

paddle对内置的数据集和非内置的提供了两种不用的模式异步

接下来让咱们一块儿来看看叭!svg

框架自带数据集

paddle.vision.datasets是cv(视觉领域)的有关数据集函数

paddle.text.datasets是nlp(天然语言领域)的有关数据集

可使用__all__魔法方法进行查看

print('视觉相关数据集:', paddle.vision.datasets.__all__)
print('天然语言相关数据集:', paddle.text.datasets.__all__)
视觉相关数据集: ['DatasetFolder', 'ImageFolder', 'MNIST', 'FashionMNIST', 'Flowers', 'Cifar10', 'Cifar100', 'VOC2012']
天然语言相关数据集: ['Conll05st', 'Imdb', 'Imikolov', 'Movielens', 'UCIHousing', 'WMT14', 'WMT16']

ToTensor

ToTensor是位于paddle.vision.transforms下的API

做用是将 PIL.Imagenumpy.ndarray 转换成 paddle.Tensor

接下来看一下手写数字识别的数据集的导入吧

在第6话的时候咱们就详解了数字识别,这里咱们再导入看看

手写数字识别API说明

from paddle.vision.transforms import ToTensor  # 导入ToTensor API
# 训练数据集 用ToTensor将数据格式转为Tensor

train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=ToTensor())  # 经过mode选择训练集和测试集

# 验证数据集
val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=ToTensor())
Cache file /home/aistudio/.cache/paddle/dataset/mnist/train-images-idx3-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/train-images-idx3-ubyte.gz 
Begin to download

Download finished
Cache file /home/aistudio/.cache/paddle/dataset/mnist/train-labels-idx1-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/train-labels-idx1-ubyte.gz 
Begin to download
........
Download finished
Cache file /home/aistudio/.cache/paddle/dataset/mnist/t10k-images-idx3-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/t10k-images-idx3-ubyte.gz 
Begin to download

Download finished
Cache file /home/aistudio/.cache/paddle/dataset/mnist/t10k-labels-idx1-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/t10k-labels-idx1-ubyte.gz 
Begin to download
..
Download finished

自带数据集的处理方案

paddle.vision.transforms中就有有关的处理办法

使用__all__魔法方法查看全部的处理方法

print('数据处理方法:', paddle.vision.transforms.__all__)
数据处理方法: ['BaseTransform', 'Compose', 'Resize', 'RandomResizedCrop', 'CenterCrop', 'RandomHorizontalFlip', 'RandomVerticalFlip', 'Transpose', 'Normalize', 'BrightnessTransform', 'SaturationTransform', 'ContrastTransform', 'HueTransform', 'ColorJitter', 'RandomCrop', 'Pad', 'RandomRotation', 'Grayscale', 'ToTensor', 'to_tensor', 'hflip', 'vflip', 'resize', 'pad', 'rotate', 'to_grayscale', 'crop', 'center_crop', 'adjust_brightness', 'adjust_contrast', 'adjust_hue', 'normalize']

举例介绍

Compose 将用于数据集预处理的接口以列表的方式进行组合。

Resize 将输入数据调整为指定大小。

ColorJitter 随机调整图像的亮度,对比度,饱和度和色调。

from paddle.vision.transforms import Compose, Resize, ColorJitter


# 定义想要使用那些数据加强方式,这里用到了随机调整亮度、对比度和饱和度(ColorJitter),改变图片大小(Resize)
transform = Compose([ColorJitter(), Resize(size=100)])

# 经过transform参数传递定义好的数据增项方法便可完成对自带数据集的应用
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
Cache file /home/aistudio/.cache/paddle/dataset/mnist/train-images-idx3-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/train-images-idx3-ubyte.gz 
Begin to download

Download finished
Cache file /home/aistudio/.cache/paddle/dataset/mnist/train-labels-idx1-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/train-labels-idx1-ubyte.gz 
Begin to download
........
Download finished

非自带数据集的定义与加载

定义非自带数据集

paddle.io.Dataset

概述Dataset的方法和行为的抽象类。

映射式(map-style)数据集须要继承这个基类,映射式数据集为能够经过一个键值索引并获取指定样本的数据集,全部映射式数据集须实现如下方法:

__getitem__: 根据给定索引获取数据集中指定样本,在 paddle.io.DataLoader 中须要使用此函数经过下标获取样本。

__len__: 返回数据集样本个数,paddle.io.BatchSampler 中须要样本个数生成下标序列。

from paddle.io import Dataset  # 导入Datasrt库


class MyDataset(Dataset):
    """ 步骤一:继承paddle.io.Dataset类 """
    def __init__(self, mode='train'):
        """ 步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集 """
        super(MyDataset, self).__init__()

        if mode == 'train':
            self.data = [
                ['traindata1', 'label1'],
                ['traindata2', 'label2'],
                ['traindata3', 'label3'],
                ['traindata4', 'label4'],
            ]
        else:
            self.data = [
                ['testdata1', 'label1'],
                ['testdata2', 'label2'],
                ['testdata3', 'label3'],
                ['testdata4', 'label4'],
            ]

    def __getitem__(self, index):
        """ 步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签) """
        data = self.data[index][0]
        label = self.data[index][1]

        return data, label

    def __len__(self):
        """ 步骤四:实现__len__方法,返回数据集总数目 """
        return len(self.data)

# 测试定义的数据集
train_dataset2 = MyDataset(mode='train')
val_dataset2 = MyDataset(mode='test')

print('=============train dataset=============')
for data, label in train_dataset2:
    print(data, label)

print('=============evaluation dataset=============')
for data, label in val_dataset2:
    print(data, label)
=============train dataset=============
traindata1 label1
traindata2 label2
traindata3 label3
traindata4 label4
=============evaluation dataset=============
testdata1 label1
testdata2 label2
testdata3 label3
testdata4 label4

导入数据

class paddle.io.DataLoader(dataset, feed_list=None, places=None, return_list=False, batch_sampler=None, batch_size=1, shuffle=False, drop_last=False, collate_fn=None, num_workers=0, use_buffer_reader=True, use_shared_memory=False, timeout=0, worker_init_fn=None)

DataLoader返回一个迭代器,该迭代器根据 batch_sampler给定的顺序迭代一次给定的 dataset

DataLoader支持单进程和多进程的数据加载方式,当 num_workers 大于0时,将使用多进程方式异步加载数据。

具体内容

# 此处暂时使用手写数字识别的数据进行演示
train_loader = paddle.io.DataLoader(train_dataset, batch_size=64, shuffle=True)
for batch_id, data in enumerate(train_loader()):
    x_data = data[0]
    y_data = data[1]

    print(x_data.numpy().shape)
    print(y_data.numpy().shape)
''' 定义了一个数据迭代器train_loader, 用于加载训练数据。 经过batch_size=64咱们设置了数据集的批大小为64, 经过shuffle=True,咱们在取数据前会打乱数据。 此外,咱们还能够经过设置num_workers来开启多进程数据加载,提高加载速度。 '''

非自带数据集处理

方法一:一种是在数据集的构造函数中进行数据加强方法的定义,以后对__getitem__中返回的数据进行应用

方法二:给自定义的数据集类暴漏一个构造参数,在实例化类的时候将数据加强方法传递进去

这里用方法一进行举例子:

from paddle.io import Dataset  # 导入类库 Dataset


class MyDataset(Dataset):  # 定义Dataset的子类MyDataset
    def __init__(self, mode='train'):
        super(MyDataset, self).__init__()

        if mode == 'train':
            self.data = [
                ['traindata1', 'label1'],
                ['traindata2', 'label2'],
                ['traindata3', 'label3'],
                ['traindata4', 'label4'],
            ]
        else:
            self.data = [
                ['testdata1', 'label1'],
                ['testdata2', 'label2'],
                ['testdata3', 'label3'],
                ['testdata4', 'label4'],
            ]

        # 定义要使用的数据预处理方法,针对图片的操做
        self.transform = Compose([ColorJitter(), Resize(size=100)])  # 和自带数据的处理相似

    def __getitem__(self, index):
        data = self.data[index][0]

        # 在这里对训练数据进行应用
        # 这里只是一个示例,测试时须要将数据集更换为图片数据进行测试
        data = self.transform(data)

        label = self.data[index][1]

        return data, label

    def __len__(self):
        return len(self.data)

总结

这个的内容就先到这里

感受里面的东西又点多,看看再研究研究,能不能更细节一点,更加白话

那么下次见,给你们一个好的体验!

Paddle2.0-外部数据集导入详解

本文同步分享在 博客“三岁学编程”(CSDN)。
若有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一块儿分享。

相关文章
相关标签/搜索