CUSBoost:基于聚类的提升下采样的非平衡数据分类

原论文地址:CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification Abstract 普通的机器学习方法,对于非平衡数据分类,总是倾向于最大化占比多的类别的分类准确率,而把占比少的类别分类错误,但是,现实应用中,我们研究的问题,对于少数的类别却更加感兴趣。最近,处理非平衡数据分类问题的方法
相关文章
相关标签/搜索