【深度学习篇】--神经网络中的池化层和CNN架构模型

一、前述 本文讲述池化层和经典神经网络中的架构模型。 二、池化Pooling 1、目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合) 减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了) 正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一
相关文章
相关标签/搜索