炸!亿级数据DB秒级平滑扩容

一步一步,娓娓道来。sql

通常来讲,并发量大,吞吐量大的互联网分层架构是怎么样的?数据库

数据库上层都有一个微服务,服务层记录“业务库”与“数据库实例配置”的映射关系,经过数据库链接池向数据库路由sql语句。架构

炸!亿级数据DB秒级平滑扩容

 

 

如上图所示,服务层配置用户库user对应的数据库实例ip。并发

画外音:实际上是一个内网域名。分布式

该分层架构,如何应对数据库的高可用?微服务

数据库高可用,很常见的一种方式,使用双主同步+keepalived+虚ip的方式进行。源码分析

炸!亿级数据DB秒级平滑扩容

 

 

如上图所示,两个相互同步的主库使用相同的虚ip。性能

炸!亿级数据DB秒级平滑扩容

 

 

当主库挂掉的时候,虚ip自动漂移到另外一个主库,整个过程对调用方透明,经过这种方式保证数据库的高可用。学习

画外音:关于高可用,《互联网分层架构如何保证“高可用“?》专题介绍过,本文再也不展开。测试

该分层架构,如何应对数据量的暴增?

随着数据量的增大,数据库要进行水平切分,分库后将数据分布到不一样的数据库实例(甚至物理机器)上,以达到下降数据量,加强性能的扩容目的。

炸!亿级数据DB秒级平滑扩容

 

 

如上图所示,用户库user分布在两个实例上,ip0和ip1,服务层经过用户标识uid取模的方式进行寻库路由,模2余0的访问ip0上的user库,模2余1的访问ip1上的user库。

画外音:此时,水平切分集群的读写实例加倍,单个实例的数据量减半,性能增加可不止一倍。

 

综上三点所述,大数据量,高可用的互联网微服务分层的架构以下:

炸!亿级数据DB秒级平滑扩容

 

 

既有水平切分,又保证高可用。

若是数据量持续增大,2个库性能扛不住了,该怎么办呢?

此时,须要继续水平拆分,拆成更多的库,下降单库数据量,增长库主库实例(机器)数量,提升性能。

新的问题来了,分红n个库后,随着数据量的增长,要增长到2*n个库,数据库如何扩容,数据可否平滑迁移,可以持续对外提供服务,保证服务的可用性?

画外音:你遇到过相似的问题么?

 

停服扩容,是最容易想到的方案?

在讨论秒级平滑扩容方案以前,先简要说明下停服务扩容的方案的步骤:

(1)站点挂一个公告“为了为广大用户提供更好的服务,本站点/游戏将在今晚00:00-2:00之间升级,届时将不能登陆,用户周知”;

画外音:见过这样的公告么,实际上在迁移数据。

(2)微服务中止服务,数据库再也不有流量写入;

(3)新建2*n个新库,并作好高可用;

(4)写一个小脚本进行数据迁移,把数据从n个库里select出来,insert到2*n个库里;

(5)修改微服务的数据库路由配置,模n变为模2*n;

(6)微服务重启,链接新库从新对外提供服务;

整个过程当中,最耗时的是第四步数据迁移。

 

若是出现问题,如何进行回滚?

若是数据迁移失败,或者迁移后测试失败,则将配置改回旧库,恢复服务便可。

 

停服方案有什么优劣?

优势:简单。

 

缺点:

(1)须要中止服务,方案不高可用;

(2)技术同窗压力大,全部工做要在规定时间内完成,根据经验,压力越大约容易出错;

画外音:这一点很致命。

(3)若是有问题第一时间没检查出来,启动了服务,运行一段时间后再发现有问题,则难以回滚,若是回档会丢失一部分数据;

有没有秒级实施、更平滑、更帅气的方案呢?

炸!亿级数据DB秒级平滑扩容

 

 

再次看一眼扩容前的架构,分两个库,假设每一个库1亿数据量,如何平滑扩容,增长实例数,下降单库数据量呢?三个简单步骤搞定。

 

步骤一:修改配置。

炸!亿级数据DB秒级平滑扩容

 

 

主要修改两处:

  • 数据库实例所在的机器作双虚ip

(1)原%2=0的库是虚ip0,现增长一个虚ip00;

(2)原%2=1的库是虚ip1,现增长一个虚ip11;

  • 修改服务的配置,将2个库的数据库配置,改成4个库的数据库配置,修改的时候要注意旧库与新库的映射关系:

(1)%2=0的库,会变为%4=0与%4=2;

(2)%2=1的部分,会变为%4=1与%4=3;

画外音:这样可以保证,依然路由到正确的数据。

 

步骤二:reload配置,实例扩容。

炸!亿级数据DB秒级平滑扩容

 

 

服务层reload配置,reload多是这么几种方式:

(a)比较原始的,重启服务,读新的配置文件;

(b)高级一点的,配置中心给服务发信号,重读配置文件,从新初始化数据库链接池;

无论哪一种方式,reload以后,数据库的实例扩容就完成了,原来是2个数据库实例提供服务,如今变为4个数据库实例提供服务,这个过程通常能够在秒级完成。

炸!亿级数据DB秒级平滑扩容

 

 

整个过程能够逐步重启,对服务的正确性和可用性彻底没有影响:

(a)即便%2寻库和%4寻库同时存在,也不影响数据的正确性,由于此时仍然是双主数据同步的;

(b)即便%4=0与%4=2的寻库落到同一个数据库实例上,也不影响数据的正确性,由于此时仍然是双主数据同步的;

 

完成了实例的扩展,会发现每一个数据库的数据量依然没有降低,因此第三个步骤还要作一些收尾工做。

画外音:这一步,数据库实例个数加倍了。

 

步骤三:收尾工做,数据收缩。

炸!亿级数据DB秒级平滑扩容

 

 

有这些一些收尾工做:

(a)把双虚ip修改回单虚ip;

(b)解除旧的双主同步,让成对库的数据再也不同步增长;

(c)增长新的双主同步,保证高可用;

(d)删除掉冗余数据,例如:ip0里%4=2的数据所有删除,只为%4=0的数据提供服务;

画外音:这一步,数据库单实例数据量减半了。

 

总结

炸!亿级数据DB秒级平滑扩容

 

 

互联网大数据量,高吞吐量,高可用微服务分层架构,数据库实现秒级平滑扩容的三个步骤为:

(1)修改配置(双虚ip,微服务数据库路由);

(2)reload配置,实例增倍完成;

(3)删除冗余数据等收尾工做,数据量减半完成;

 

思路比结论重要

若是想学习Java工程化、高性能及分布式、深刻浅出。微服务、Spring,MyBatis,Netty源码分析的朋友能够加个人Java高级交流:787707172,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给你们。

相关文章
相关标签/搜索