KMP算法详解-完全清楚了(转载+部分原创)

引言

KMP算法指的是字符串模式匹配算法,问题是:在主串T中找到第一次出现完整子串P时的起始位置。该算法是三位大牛:D.E.Knuth、J.H.Morris和V.R.Pratt同时发现的,以其名字首字母命名。在网上看了很多对KMP算法的解析,大多写的不甚明了。直到我看到一篇博客的介绍,看完基本了解脉络,本文主要是在其基础上,在本身较难理解的地方进行补充修改而成。该博客地址为:https://www.cnblogs.com/yjiyjige/p/3263858.html,对做者的明晰的解析表示感谢。html

 

1. 通常的解法

KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是咱们平时常说的关键字搜索。模式串就是关键字(接下来称它为P),若是它在一个主串(接下来称为T)中出现,就返回它的具体位置,不然返回-1(经常使用手段)。前端

 

首先,对于这个问题有一个很直接的想法:从左到右一个个匹配,若是这个过程当中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?程序员

咱们能够这样初始化:算法

 

以后咱们只须要比较i指针指向的字符和j指针指向的字符是否一致。若是一致就都向后移动,若是不一致,以下图:数组

 

 

A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,而后又从新开始这个步骤:数据结构

 

基于这个想法咱们能够获得如下的程序:post

复制代码
1 /**
 2 
 3  * 暴力破解法
 4 
 5  * @param ts 主串
 6 
 7  * @param ps 模式串
 8 
 9  * @return 若是找到,返回在主串中第一个字符出现的下标,不然为-1
10 
11  */
12 
13 public static int bf(String ts, String ps) {
14 
15     char[] t = ts.toCharArray();
16 
17     char[] p = ps.toCharArray();
18 
19     int i = 0; // 主串的位置
20 
21     int j = 0; // 模式串的位置
22 
23     while (i < t.length && j < p.length) {
24 
25        if (t[i] == p[j]) { // 当两个字符相同,就比较下一个
26 
27            i++;
28 
29            j++;
30 
31        } else {
32 
33            i = i - j + 1; // 一旦不匹配,i后退
34 
35            j = 0; // j归0
36 
37        }
38 
39     }
40 
41     if (j == p.length) {
42 
43        return i - j;
44 
45     } else {
46 
47        return -1;
48 
49     }
50 
51 }
复制代码

上面的程序是没有问题的,但不够好!(想起我高中时候数字老师的一句话:我不能说你错,只能说你不对~~~)优化

注意:该算法程序很简单,很是好理解,请认真看完,由于后面的算法是在该算法基础上修订的。spa

 

2.若是人眼来优化的话,怎样处理

参考上面的算法,咱们串中的位置指针i,j来讲明,第一个位置下标以0开始,咱们称为第0位。下面看看,若是是人为来寻找的话,确定不会再把i移动回第1位,由于主串匹配失败的位置(i=3)前面除了第一个A以外再也没有A,咱们为何能知道主串前面只有一个A?由于咱们已经知道前面三个字符都是匹配的!(这很重要)。移动过去确定也是不匹配的!有一个想法,i能够不动,咱们只须要移动j便可,以下图:3d

 

上面的这种状况仍是比较理想的状况,咱们最多也就多比较了再次。但假如是在主串“SSSSSSSSSSSSSA”中查找“SSSSB”,比较到最后一个才知道不匹配,而后i回溯,这个的效率是显然是最低的。

 

大牛们是没法忍受“暴力破解”这种低效的手段的,因而他们三个研究出了KMP算法。其思想就如同咱们上边所看到的同样:“利用已经部分匹配这个有效信息,保持i指针不回溯,经过修改j指针,让模式串尽可能地移动到有效的位置。”

 

因此,整个KMP的重点就在于当某一个字符与主串不匹配时,咱们应该知道j指针要移动到哪

 

接下来咱们本身来发现j的移动规律:

 

如图:C和D不匹配了,咱们要把j移动到哪?显然是第1位。为何?由于前面有一个A相同啊:

 

以下图也是同样的状况:

 

能够把j指针移动到第2位,由于前面有两个字母是同样的:

 

至此咱们能够大概看出一点端倪,当匹配失败时,j要移动的下一个位置k。存在着这样的性质:最前面的k个字符和j以前的最后k个字符是同样的

若是用数学公式来表示是这样的

P[0 ~ k-1] == P[j-k ~ j-1]

这个至关重要,若是以为很差记的话,能够经过下图来理解:

 

弄明白了这个就应该可能明白为何能够直接将j移动到k位置了。

由于:

当T[i] != P[j]时

有T[i-j ~ i-1] == P[0 ~ j-1]

由P[0 ~ k-1] == P[j-k ~ j-1]

必然:T[i-k ~ i-1] == P[0 ~ k-1]

原文说公式很无聊,但我以为这样简单的公式就能清楚表达咱们想说的含义,实在是幸甚。这个公式小学生都能看懂的,真的,我教三年级的娃就告诉她这个了。无非就是连续的序列的首尾下标和连续序列长度三者之间的关系。设首下标为head,尾下标为tail,序列长度为len,则公式为:len=tail-head+1;head=tail-len+1;咱们head为0,则更简化了:len=tail+1;知道这个了,请必定耐着性子看懂,对咱们的理解颇有帮助。下面全部的公式都是这个相关的,请都要看懂。

这一段公式证实了咱们为何能够直接将j移动到k而无须再比较前面的k个字符。

补充说明:

该规律是KMP算法的关键,KMP算法是利用待匹配的子串自身的这种性质,来提升匹配速度。该性质在许多其余中版本的解释中还能够描述成:若子串的前缀集和后缀集中,重复的最长子串的长度为k,则下次匹配子串的j能够移动到第k位(下标为0为第0位)。咱们将这个解释定义成最大重复子串解释。

这里面的前缀集表示除去最后一个字符后的前面的全部子串集合,同理后缀集指的的是除去第一个字符后的后面的子串组成的集合。举例说明以下:

在“aba”中,前缀集就是除掉最后一个字符'a'后的子串集合{a,ab},同理后缀集为除掉最前一个字符a后的子串集合{a,ba},那么二者最长的重复子串就是a,k=1;

在“ababa”中,前缀集是{a,ab,aba,abab},后缀集是{a,ba,aba,baba},两者最长重复子串是aba,k=3;

在“abcabcdabc”中,前缀集是{a,ab,abc,abca,abcab,abcabc,abcabcd,abcabcda,abcabcdab},后缀集是{c,bc,abc,dabc,cdabc,bcdabc,abcdabc,cabcdabc,bcabcdabc},两者最长重复的子串是“abc”,k=3; 

下面咱们用这个解释,来再一次手动求解上面的过程:

首先以下图所示:

 

 

 

如图:C和D不匹配了,咱们要把j移动到哪?j位前面的子串是ABA,该子串的前缀集是{A,AB},后缀集是{A,BA},最大的重复子串是A,只有1个字符,因此j移到k即第1位。

 

 

 

再分析下图的状况:

 

 

 

在j位的时候,j前面的子串是ABCAB,前缀集是{A,AB,ABC,ABCA},后缀集是{B,AB,CAB,BCAB},最大重复子串是AB,个数是2个字符,所以j移到k即第2位。

 

 

 

 上面说的,若是分解成计算机的步骤,则是以下的过程:

1)找出前缀pre,设为pre[0~m];

2)找出后缀post,设为post[0~n];

3)从前缀pre里,先以最大长度的s[0~m]为子串,即设k初始值为m,跟post[n-m+1~n]进行比较:

  若是相同,则pre[0~m]则为最大重复子串,长度为m,则k=m;

       若是不相同,则k=k-1;缩小前缀的子串一个字符,在跟后缀的子串按照尾巴对齐,进行比较,是否相同。

    如此下去,直到找到重复子串,或者k没找到。

改天,这里我写个代码说明,怎么找重复子串。

根据上面的求解过程,咱们知道子串的j位前面,有j个字符,先后缀必然少掉首尾一个字符,所以重复子串的最大值为j-1,所以知道下一次的j指针最多移到第j-1位。

我为何要补充上面这段说明,是由于该说明能便于咱们理解下面的求解next数组的过程,上面实际也是指出了人工求解next[j]的过程。不知道next[j]为什么物不要紧,看到下面的定义之后,请到时再绕回来回味就好了。

 

3.求next数组

好,接下来就是重点了,怎么求这个(这些)k呢?由于在P的每个位置均可能发生不匹配,也就是说咱们要计算每个位置j对应的k,因此用一个数组next来保存,next[j] = k,表示当T[i] != P[j]时,j指针的下一个位置。另外一个很是有用且恒等的定义,由于下标从0开始的,k值实际是j位前的子串的最大重复子串的长度。请时刻牢记next数组的定义,下面的解释是死死地围绕着这个定义来解释的。

 

不少教材或博文在这个地方都是讲得比较含糊或是根本就一笔带过,甚至就是贴一段代码上来,为何是这样求?怎么能够这样求?根本就没有说清楚。而这里偏偏是整个算法最关键的地方。

复制代码
1 public static int[] getNext(String ps) {
 2 
 3     char[] p = ps.toCharArray();
 4 
 5     int[] next = new int[p.length];
 6 
 7     next[0] = -1;
 8 
 9     int j = 0;
10 
11     int k = -1;
12 
13     while (j < p.length - 1) {
14 
15        if (k == -1 || p[j] == p[k]) {
16 
17            next[++j] = ++k;
18 
19        } else {
20 
21            k = next[k];
22 
23        }
24 
25     }
26 
27     return next;
28 
29 }
复制代码

这个版本的求next数组的算法应该是流传最普遍的,代码是很简洁。但是真的很让人摸不到头脑,它这样计算的依据究竟是什么?

好,先把这个放一边,咱们本身来推导思路,如今要始终记住一点,next[j]的值(也就是k)表示,当P[j] != T[i]时,j指针的下一步移动位置

 

先来看第一个:当j为0时,若是这时候不匹配,怎么办?

 

像上图这种状况,j已经在最左边了,不可能再移动了,这时候要应该是i指针后移。因此在代码中才会有next[0] = -1;这个初始化。

若是是当j为1的时候呢?

 

显然,j指针必定是后移到0位置的。由于它前面也就只有这一个位置了~~~

 

下面这个是最重要的,请看以下图:

  

 

请仔细对比这两个图。

咱们发现一个规律:

当P[k] == P[j]时,

有next[j+1] == next[j] + 1

其实这个是能够证实的:

由于在P[j]以前已经有P[0 ~ k-1] == p[j-k ~ j-1]。(next[j] == k)

这时候现有P[k] == P[j],咱们是否是能够获得P[0 ~ k-1] + P[k] == p[j-k ~ j-1] + P[j]。

即:P[0 ~ k] == P[j-k ~ j],即next[j+1] == k + 1 == next[j] + 1。

原文说公式很差懂,看图容易。我以为,公式实际挺简单的,结合图再把公式耐着性子看懂。实际上,该公式无非是用字母下标表明序列的起始段,描述了前缀和后缀重复相等的一段长度的序列罢了。

 

那若是P[k] != P[j]呢?好比下图所示:

 

像这种状况,若是你从代码上看应该是这一句:k = next[k];为何是这样子?你看下面应该就明白了。

 

如今你应该知道为何要k = next[k]了吧!像上边的例子,咱们已经不可能找到[ A,B,A,B ]这个最长的后缀串了,但咱们仍是可能找到[ A,B ]、[ B ]这样的前缀串的。因此这个过程像不像在定位[ A,B,A,C ]这个串,当C和主串不同了(也就是k位置不同了),那固然是把指针移动到next[k]啦。

 

补充说明:看了上面这段的描述,你是否真的理解了P[k]!=P[j]时,是要使用k=next[k]的语句呢?我反正是没弄懂,我总以为这段else的代码有点反人类,没法理解。实际上,咱们的目的是用数学概括法,来求解next数组的每一个值。当前已经求到next[j],接着就应该求解next[j+1],此时就分两种状况,一种是:重复的字符串个数会增长,即所谓的p[k]=p[j],此时p[j+1]=k+1;即p[++j]=++k;另外一种就是不能增长,也就是说P[k]!=P[j],即最大重复子串的长度不能增长了;按照next[j]的定义,就是当子串的第j位和主串的第i位不一致时,下一次,和主串i位进行比较的子串的j指针的位置。这个定义仍是不太直观,主要是指脑子里不知道是怎样实际操做的,那你回头看看,我上面写的另外一个最大重复子串长度的定义,next[j]的值k就是j位以前的子串中,前缀集和后缀集中的最大重复子串的长度。以这个定义咱们来尝试在next[j]=k,p[k]!=p[j]时,手动求解next[j+1]的值。

请看下面的图:

当p[j]!=p[k]时咱们要找的就是j+1位前面的子串,即p[0~j]的最大重复子串长度。就是说找到一个最长的子串,假设最长重复子串长度为k1,即p[0~k1-1],使得p[0~k1-1]===p[j+1-k1~j],此时k1即为所求的位置即next[j+1]=k1;由于p[k]!=p[j]了,所以k1最大等于k,即最大可能的重复子串只多是p[0~k-1]里的子串。此时咱们人工求解的话,显然就是从p[0~k-1]里求解最大重复子串。

咱们按照第2节介绍的查找最长重复子串的方法:从p[0~k-1]里,第一步,以0位为起始字符先挑选最大子串p[0~k-1],而后拿着这个子串,尾巴对齐,即看p[k-1]和p[j]对齐,与子串p[j-k+1~j]进行比较,见图中绿色线段;若是线段上每一个值都相等了,则找到最大重复子串p[0~k-1];若是不等,则继续缩小线段长度找下去。

下面重点来了,请注意:咱们看,在查找最大匹配的过程当中,将上面选择的待比较的子串分红两部分:最后一个端点为一部分,前面的一段为一部分;好比上面的第一个选取的最大比较子串的例子:前缀的p[0~k-1]分红两段为p[0~k-2]和p[k-1],和后缀的p[j-k+1~j-1]和p[j]分别比较,即p[0~k-2]和p[j-k+1~j-1]比较,p[k-1]和p[j]比较,见图中的红色线段和绿色圆点;经过这个例子咱们知道,只要前面一段能重复且尽量的长,那么加上最后一个端点这个重复子串也必将是最长的。咱们继续分析,由于next[j]已经求出,即p[0~k-1]===p[j-k~j-1],咱们能够把上面的第一段的比较进一步转换成,比较p[0~k-2]和p[1~k-1]子串了,见图中紫线箭头指示的漂移;看到没有,这个就是求k位前的子串p[0~k-1]的最大重复子串,很显然不就是求next[k]嘛?!很明显p[0~next[k]-1]就是咱们要找的第一个候选最大的重复子串,这也说明了子串p[0~k-2]就不多是重复子串,也没有尝试比较的必要。由于根据next[j]的定义咱们知道,next[k]就是要求的子串为p[0~k-1]的最大重复子串的长度,最大,最大,最大,重要的事说三遍。咱们是充分利用了前面k<j时,next[k]已经求出来的条件,减小了子串比较的次数(其实也不叫减小了,那些比较原本就是无效的);这解释了为何把k=next[k]。此时,p[0~next[k]-1]和p[j-next[k]~j-1]子串已经恒等了,咱们只要比较另外的一部分即两个端点,p[next[k]]和p[j](对应于代码中的p[k]==p[j],注意在上个循环p[k]!=p[j]时,k已经被赋值next[k],而j仍是上次的那个j);若是这二者相等了,则重复子串的长度+1,next[j+1]=next[k]+1(k++即next[k]+1);若是不相等了,则说明倒数第二大的p[0~next[k]-1]都不行了,比这个重复子串小的最大的重复子串只能是k=next[next[k]]了,如此继续查找下去。所以比较的都是按序递减的最大重复子串,很是的有效,一点都没有多比较。找不到的话,k会被赋值为-1。

这个算法神奇难解之处就在k=next[k]这一处的理解上,网上解析的很是之多,有的就是例证,举例子按代码走流程,走出结果了,跟肉眼看的一致,就认为解释了为何k=next[k];不多有看到解释的很是清楚的,或者有,但我没有仔细和耐心看下去。我通常扫一眼,就大概知道这个解析是否能说的通。仔细想了三天,搞的千转百折,山重水复,一头雾气缭绕的。搞懂之后又以为确实简单,可是绕人,烧脑。

 

有了next数组以后就一切好办了,咱们能够动手写KMP算法了:

复制代码
1 public static int KMP(String ts, String ps) {
 2 
 3     char[] t = ts.toCharArray();
 4 
 5     char[] p = ps.toCharArray();
 6 
 7     int i = 0; // 主串的位置
 8 
 9     int j = 0; // 模式串的位置
10 
11     int[] next = getNext(ps);
12 
13     while (i < t.length && j < p.length) {
14 
15        if (j == -1 || t[i] == p[j]) { // 当j为-1时,要移动的是i,固然j也要归0
16 
17            i++;
18 
19            j++;
20 
21        } else {
22 
23            // i不须要回溯了
24 
25            // i = i - j + 1;
26 
27            j = next[j]; // j回到指定位置
28 
29        }
30 
31     }
32 
33     if (j == p.length) {
34 
35        return i - j;
36 
37     } else {
38 
39        return -1;
40 
41     }
42 
43 }
复制代码

和暴力破解相比,就改动了4个地方。其中最主要的一点就是,i不须要回溯了。

 

4.next数组求解算法优化

最后,来看一下上边的算法存在的缺陷。来看第一个例子:

 

显然,当咱们上边的算法获得的next数组应该是[ -1,0,0,1 ]

因此下一步咱们应该是把j移动到第1个元素咯:

 

不难发现,这一步是彻底没有意义的。由于后面的B已经不匹配了,那前面的B也必定是不匹配的,一样的状况其实还发生在第2个元素A上。

显然,发生问题的缘由在于P[j] == P[next[j]]

补充说明:这部分做者说的也比较清楚了。实际上对下面的代码if(p[++j]==p[++k]),咱们注意是先自加,再使用。因此咱们按照j不变的状况下解释下一步流程就是p[j+1]==p[next[j]+1];此时比较将无心义,由于p[next[k]+1]位就已经表示,就是k+1位和主串的i不相等,要移动的j下标为next[K+1],由于p[k+1]又等于p[j+1],也就是说比较j+1位和主串的i位是否相等时,也将要j移到next[K+1]位去;

因此咱们也只须要添加一个判断条件便可:

复制代码
public static int[] getNext(String ps) {

    char[] p = ps.toCharArray();

    int[] next = new int[p.length];

    next[0] = -1;

    int j = 0;

    int k = -1;

    while (j < p.length - 1) {

       if (k == -1 || p[j] == p[k]) {

           if (p[++j] == p[++k]) { // 当两个字符相等时要跳过

              next[j] = next[k];

           } else {

              next[j] = k;

           }

       } else {

           k = next[k];

       }

    }

    return next;

}

对我这个解释,有疑问的,欢迎探讨。 

我十多年前刚工做的时候,实在没想到十多年后的不惑之年,竟然从新开始作程序员,才感叹本身已经不写程序很久了,对本身是否还能写程序,还能有那个热情,产生了隐隐做痛的怀疑。为了新生活,为了在异国他乡从新找工做,我给本身定了目标,学ASP.NET、前端开发和算法。犹记读书时,老师的数据结构课程中对KMP算法,就略过不讲。我本身看的,我记得当时应该是看懂的。可如今我竟然又想了两天,其中好几回,在懂了,又不懂了的过程当中恍惚徘徊,我都怀疑是否是真的年纪大了,脑子很差使了。心情异常沮丧也迫不得已,本身的选择,必须坚决的走下去。本篇是我第一篇程序员博客,将纪录个人新的人生历程。我目前的主要关注点在ASP.NET MVC和REACT等前端开发,而且开始刷leetcode题目。但愿本身能挺下去。

相关文章
相关标签/搜索