Kubernetes 弹性伸缩全场景解读(五) - 定时伸缩组件发布与开源

做者| 阿里云容器技术专家刘中巍(莫源)nginx

导读:Kubernetes弹性伸缩系列文章为读者一一解析了各个弹性伸缩组件的相关原理和用法。本篇文章中,阿里云容器技术专家莫源将为你带来定时伸缩组件  kubernetes-cronhpa-controller  的相关介绍与具体操做,目前该组件已经正式开源,欢迎你们一块儿交流探讨。git

 

前言


容器技术的发展让软件交付和运维变得更加标准化、轻量化、自动化。这使得动态调整负载的容量变成一件很是简单的事情。在 Kubernetes 中,一般只须要修改对应的 replicas 数目便可完成。当负载的容量调整变得如此简单后,咱们再回过头来看下应用的资源画像。


对于大部分互联网的在线应用而言,负载的峰谷分布是存在必定规律的。例以下图是一个典型 web 应用的负载曲线。从天天早上 8 点开始,负载开始飙高,在中午 12 点到 14 点之间,负载会回落;14 点到 18 点会迎来第二个高峰;在 18 点以后负载会逐渐回落到最低点。

github


资源的波峰和波谷之间相差 3~4 倍左右的容量,低负载的时间会维持 8 个小时左右。若是使用纯静态的容量规划方式进行应用管理与部署,咱们能够计算得出资源浪费比为 25% (计算方式: 1 - (18+416)/424 = 0.25 )。而当波峰和波谷之间的差异到达 10 倍的时候,资源浪费比就会飙升至 57% (计算方式: 1 - (18+1016)/1024 = 0.57 )。


那么当咱们面对这么多的资源浪费时,是否能够经过弹性的方式来解决呢?


标准的 HPA 是基于指标阈值进行伸缩的,常见的指标主要是 CPU、内存,固然也能够经过自定义指标例如 QPS、链接数等进行伸缩。可是这里存在一个问题:基于资源的伸缩存在必定的时延,这个时延主要包含:采集时延(分钟级) + 判断时延(分钟级) + 伸缩时延(分钟级)。而对于上图中,咱们能够发现负载的峰值毛刺仍是很是尖锐的,这有可能会因为 HPA 分钟级别的伸缩时延形成负载数目没法及时变化,短期内应用的总体负载飙高,响应时间变慢。特别是对于一些游戏业务而言,因为负载太高带来的业务抖动会形成玩家很是差的体验。


为了解决这个场景,阿里云容器服务提供了 kube-cronhpa-controller,专门应对资源画像存在周期性的场景。开发者能够根据资源画像的周期性规律,定义 time schedule,提早扩容好资源,而在波谷到来后定时回收资源。底层再结合 cluster-autoscaler 的节点伸缩能力,提供资源成本的节约。web

 

使用方式


cronhpa 是基于 CRD 的方式开发的 controller,使用 cronhpa 的方式很是简单,总体的使用习惯也尽量的和 HPA 保持一致。代码仓库地址api

 

1. 安装 CRD

kubectl apply -f config/crds/autoscaling_v1beta1_cronhorizontalpodautoscaler.yaml

 

 

2. 安装 RBAC 受权

# create ClusterRole 
kubectl apply -f config/rbac/rbac_role.yaml
# create ClusterRolebinding and ServiceAccount 
kubectl apply -f config/rbac/rbac_role_binding.yaml

 

 

3. 部署 kubernetes-cronhpa-controller

kubectl apply -f config/deploy/deploy.yaml

 

 

4. 验证 kubernetes-cronhpa-controller 安装状态

kubectl get deploy kubernetes-cronhpa-controller -n kube-system -o wide 
kubernetes-cronhpa-controller git:(master)  kubectl get deploy kubernetes-cronhpa-controller -n kube-system
NAME                            DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
kubernetes-cronhpa-controller   1         1         1            1           49s

 

 

运行一个 cronhpa 的 demo


安装了 kubernetes-cronhpa-controller 后,咱们能够经过一个简单的 demo 进行功能的验证。在部署前,咱们先看下一个标准的 cronhpa 的定义。app

apiVersion: autoscaling.alibabacloud.com/v1beta1
kind: CronHorizontalPodAutoscaler
metadata:
  labels:
    controller-tools.k8s.io: "1.0"
  name: cronhpa-sample
  namespace: default 
spec:
   scaleTargetRef:
      apiVersion: apps/v1beta2
      kind: Deployment
      name: nginx-deployment-basic
   jobs:
   - name: "scale-down"
     schedule: "30 */1 * * * *"
     targetSize: 1
   - name: "scale-up"
     schedule: "0 */1 * * * *"
     targetSize: 3


其中 scaleTargetRef 字段负责描述伸缩的对象,jobs 中定义了扩展的 crontab 定时任务。在这个例子中,设定的是每分钟的第 0 秒扩容到 3 个 Pod,每分钟的第 30s 缩容到 1 个 Pod。若是执行正常,咱们能够在 30s 内看到负载数目的两次变化。运维

 

1. 部署 demo 应用与 cronhpa 的配置

kubectl apply -f examples/deployment_cronhpa.yaml

 

 

2. 检查 demo 应用副本数目

kubectl get deploy nginx-deployment-basic 
kubernetes-cronhpa-controller git:(master)  kubectl get deploy nginx-deployment-basic
NAME                     DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
nginx-deployment-basic   2         2         2            2           9s

 

 

3. 查看 cronhpa 的状态 ,确认 cronhpa 的 job 已提交

kubectl describe cronhpa cronhpa-sample 
Name:         cronhpa-sample
Namespace:    default
Labels:       controller-tools.k8s.io=1.0
Annotations:  kubectl.kubernetes.io/last-applied-configuration:
                {"apiVersion":"autoscaling.alibabacloud.com/v1beta1","kind":"CronHorizontalPodAutoscaler","metadata":{"annotations":{},"labels":{"controll...
API Version:  autoscaling.alibabacloud.com/v1beta1
Kind:         CronHorizontalPodAutoscaler
Metadata:
  Creation Timestamp:  2019-04-14T10:42:38Z
  Generation:          1
  Resource Version:    4017247
  Self Link:           /apis/autoscaling.alibabacloud.com/v1beta1/namespaces/default/cronhorizontalpodautoscalers/cronhpa-sample
  UID:                 05e41c95-5ea2-11e9-8ce6-00163e12e274
Spec:
  Jobs:
    Name:         scale-down
    Schedule:     30 */1 * * * *
    Target Size:  1
    Name:         scale-up
    Schedule:     0 */1 * * * *
    Target Size:  3
  Scale Target Ref:
    API Version:  apps/v1beta2
    Kind:         Deployment
    Name:         nginx-deployment-basic
Status:
  Conditions:
    Job Id:           38e79271-9a42-4131-9acd-1f5bfab38802
    Last Probe Time:  2019-04-14T10:43:02Z
    Message:
    Name:             scale-down
    Schedule:         30 */1 * * * *
    State:            Submitted
    Job Id:           a7db95b6-396a-4753-91d5-23c2e73819ac
    Last Probe Time:  2019-04-14T10:43:02Z
    Message:
    Name:             scale-up
    Schedule:         0 */1 * * * *
    State:            Submitted
Events:               <none>

 

 

4. 等待一段时间,查看 cronhpa 的运行状态。

kubernetes-cronhpa-controller git:(master) kubectl describe cronhpa cronhpa-sample
Name:         cronhpa-sample
Namespace:    default
Labels:       controller-tools.k8s.io=1.0
Annotations:  kubectl.kubernetes.io/last-applied-configuration:
                {"apiVersion":"autoscaling.alibabacloud.com/v1beta1","kind":"CronHorizontalPodAutoscaler","metadata":{"annotations":{},"labels":{"controll...
API Version:  autoscaling.alibabacloud.com/v1beta1
Kind:         CronHorizontalPodAutoscaler
Metadata:
  Creation Timestamp:  2019-04-15T06:41:44Z
  Generation:          1
  Resource Version:    15673230
  Self Link:           /apis/autoscaling.alibabacloud.com/v1beta1/namespaces/default/cronhorizontalpodautoscalers/cronhpa-sample
  UID:                 88ea51e0-5f49-11e9-bd0b-00163e30eb10
Spec:
  Jobs:
    Name:         scale-down
    Schedule:     30 */1 * * * *
    Target Size:  1
    Name:         scale-up
    Schedule:     0 */1 * * * *
    Target Size:  3
  Scale Target Ref:
    API Version:  apps/v1beta2
    Kind:         Deployment
    Name:         nginx-deployment-basic
Status:
  Conditions:
    Job Id:           84818af0-3293-43e8-8ba6-6fd3ad2c35a4
    Last Probe Time:  2019-04-15T06:42:30Z
    Message:          cron hpa job scale-down executed successfully
    Name:             scale-down
    Schedule:         30 */1 * * * *
    State:            Succeed
    Job Id:           f8579f11-b129-4e72-b35f-c0bdd32583b3
    Last Probe Time:  2019-04-15T06:42:20Z
    Message:
    Name:             scale-up
    Schedule:         0 */1 * * * *
    State:            Submitted
Events:
  Type    Reason   Age   From                            Message
  ----    ------   ----  ----                            -------
  Normal  Succeed  5s    cron-horizontal-pod-autoscaler  cron hpa job scale-down executed successfully

此时能够在 event 中发现负载的定时伸缩已经生效。ide

最后

kubernetes-cronhpa-controller 能够很好的解决拥有周期性资源画像的负载弹性,结合底层的 cluster-autoscaler 能够下降大量的资源成本。目前 kubernetes-cronhpa-controller 已经正式开源,更详细的用法与文档请查阅代码仓库的文档,欢迎开发者提交 issue 与 pr。阿里云


原文连接
本文为云栖社区原创内容,未经容许不得转载。url

相关文章
相关标签/搜索