Kubernetes 弹性伸缩全场景解读(二)- HPA 的原理与演进

 

前言

在上一篇文章 Kubernetes 弹性伸缩全场景解析 (一):概念延伸与组件布局中,咱们介绍了在 Kubernetes 在处理弹性伸缩时的设计理念以及相关组件的布局,在今天这篇文章中,会为你们介绍在 Kubernetes 中弹性伸缩最经常使用的组件 HPA(Horizontal Pod Autoscaler)。HPA 是经过计算 Pod 的实际工做负载进行从新容量规划的组件,在资源池符合知足条件的前提下,HPA 能够很好的实现弹性伸缩的模型。HPA 到目前为止,已经演进了三个大版本,本文将会为你们详细解析 HPA 底层的原理以及在 Kubernetes 中弹性伸缩概念的演变历程。php

HPA 基本原理

HPA 是根据实际工做负载水平伸缩容器数目的组件,从中能够提炼出两个很是重要的关键字:负载数目。咱们能够用一个很是简单的数学公式进行概括:apache

下面举一个实际例子进行上述公式的阐述。api

假设存在一个叫 A 的 Deployment,包含3个 Pod,每一个副本的 Request 值是 1 核,当前 3 个 Pod 的 CPU 利用率分别是 60%、70% 与 80%,此时咱们设置 HPA 阈值为 50%,最小副本为 3,最大副本为 10。接下来咱们将上述的数据带入公式中:架构

 

  • 总的 Pod 的利用率是 60%+70%+80% = 210%;
  • 当前的 Target 是 3;
  • 算式的结果是 70%,大于50%阈值,所以当前的 Target 数目太小,须要进行扩容;
  • 从新设置 Target 值为 5,此时算式的结果为 42% 低于 50%,判断还须要扩容两个容器;
  • 此时 HPA 设置 Replicas 为 5,进行 Pod 的水平扩容。

 

通过上面的推演,能够协助开发者快速理解 HPA 最核心的原理,不过上面的推演结果和实际状况下是有所出入的,若是开发者进行试验的话,会发现 Replicas 最终的结果是 6 而不是 5。这是因为 HPA 中一些细节的处理致使的,主要包含以下三个主要的方面:app

 

  1. 噪声处理

经过上面的公式能够发现,Target 的数目很大程度上会影响最终的结果,而在 Kubernetes 中,不管是变动或者升级,都更倾向于使用 Recreate 而不是 Restart 的方式进行处理。这就致使了在 Deployment 的生命周期中,可能会出现某一个时间,Target 会因为计算了 Starting 或者 Stopping 的 Pod 而变得很大。这就会给 HPA 的计算带来很是大的噪声,在 HPA Controller 的计算中,若是发现当前的对象存在 Starting 或者 Stopping 的 Pod 会直接跳过当前的计算周期,等待状态都变为 Running 再进行计算。布局

 

  1. 冷却周期

在弹性伸缩中,冷却周期是不能逃避的一个话题,不少时候咱们指望快速弹出与快速回收,而另外一方面,咱们又不但愿集群震荡,因此一个弹性伸缩活动冷却周期的具体数值是多少,一直被开发者所挑战。在 HPA 中,默认的扩容冷却周期是 3 分钟,缩容冷却周期是 5 分钟。url

 

  1. 边界值计算

咱们回到刚才的计算公式,第一次咱们算出须要弹出的容器数目是 5,此时扩容后总体的负载是 42%,可是咱们彷佛忽略了一个问题:一个全新的 Pod 启动会不会本身就占用了部分资源?此外,8% 的缓冲区是否就可以缓解总体的负载状况?要知道当一次弹性扩容完成后,下一次扩容要最少等待 3 分钟才能够继续扩容。为了解决这些问题,HPA 引入了边界值 △,目前在计算边界条件时,会自动加入 10% 的缓冲,这也是为何在刚才的例子中最终的计算结果为 6 的缘由。spa

HPA 的演进历程

在了解了 HPA 的基本原理后,咱们来聊一下 HPA 的演进历程,目前 HPA 已经支持了 autoscaling/v1autoscaling/v1beta1 和 autoscaling/v1beta2 三个大版本。大部分的开发者目前比较熟悉的是autoscaling/v1 的版本,这个版本的特色是只支持 CPU 一个指标的弹性伸缩,大体的 yaml 内容以下:设计

 

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: php-apache
  namespace: default
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: php-apache
  minReplicas: 1
  maxReplicas: 10
  targetCPUUtilizationPercentage: 50

 

 

接下来咱们再来看一下 v2beta1 与 v2beta2 的 yaml,会发现里面支持的 metrics 类型增长了不少,结构也复杂了不少。3d

 

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
  name: php-apache
  namespace: default
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: php-apache
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        kind: AverageUtilization
        averageUtilization: 50
  - type: Pods
    pods:
      metric:
        name: packets-per-second
      targetAverageValue: 1k
  - type: Object
    object:
      metric:
        name: requests-per-second
      describedObject:
        apiVersion: extensions/v1beta1
        kind: Ingress
        name: main-route
      target:
        kind: Value
        value: 10k
---
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: php-apache
  namespace: default
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: php-apache
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50

 

 

而这些变化的产生不得不提的是 Kubernetes 社区中对监控与监控指标的认识与转变。在 Kubernetes 中,有两个核心的监控组件 Heapster 与 Metrics Server。Heapster 是早期 Kubernetes 社区中惟一的监控组件,它所包含的功能很强大,经过采集 kubelet 提供的 metrics 接口,并支持监控数据的离线与归档。

 

 

大体的架构图如上:source 的部分是不一样的数据来源,主要是 kubelet 的 common api 与后来提供的 summary api;processor 的做用是将采集的数据进行处理,分别在 namespace 级别、cluster 级别进行聚合,并建立新的聚合类型的监控数据;sink 的做用是数据离线与归档,常见的归档方式包括 influxdb、kafka 等等。Heapster 组件在至关长时间成为了 Kubernetes 社区中监控数据的惟一来源,也所以有很是多的和监控相关的组件经过 Heapster 的链路进行监控数据的消费。可是后来,Kubernetes 社区发现了 Heapster 存在很是严重的几个问题:

 

  • 强大繁多的 Sink 由不一样的 Maintainer 进行维护,50% 以上的 Heapster Issues 都是关于 Sink 没法使用的,而因为 Maintainer 的活跃度不一样形成 Heapster 社区有大量的 issues 没法解决;
  • 对于开发者而言,监控数据的类型已经再也不是 CPU、Memory 这么简单的几个指标项了,愈来愈多的开发者须要应用内或者接入层的监控指标,例如 ingress 的 QPS、应用的在线活跃人数等等。而这些指标的获取是 Heapster 没法实现的;
  • Prometheus 的成熟让 Heapster 的生存空间不断被挤压,自从 Prometheus 被 CNCF 收录为孵化项目,Heapster 的不可替代地位被正式移除。

 

社区通过反思后,决定将监控的指标边界进行划分,分为 Resource、Custom 和 External 三种不一样的 Metrics,而 Heapster(Metrics Server) 的定位就只关心 Resource 这一种指标类型。为了解决代码维护性的问题,Metrics Server 对 Heapster 进行了裁剪,裁剪后的架构以下:

 

 

去掉了 Sink 的机制,并将调用方式改成标准的 API 注册的方式,这样的好处是既精简了核心代码的逻辑又提供了替代的可能,也就是说此时 Metrics Server 也是能够替代的,只要实现了相同的 API 接口,并注册到 API Server 上,就能够替代 Metrics Server。

 

接下来咱们解析一下三种不一样的 Metrics 与使用的场景:

  API 注释
Resource metrics.k8s.io Pod的资源指标,计算的时要除以Pod数目再对比阈值进行判断
Custom custom.metrics.k8s.io Object: CRD等对象的监控指标,直接计算指标比对阈值
Pods : 每一个Pod的自定义指标,计算时要除以Pods的数目
External external.metrics.k8s.io External:集群指标的监控指标,一般由云厂商实现

其中 autoscaling/v2beta1 支持 Resource 与 Custom 两种指标,而 autoscaling/v2beta2 中增长了 External 的指标的支持。

最后

HPA 目前已经进入了 GA 阶段,在大致的功能上面不会进行过多的变化,目前社区的主要发力点在如何配置化的调整细节参数、丰富监控 adapter 的实现等等。在本文中,咱们在概念上给你们介绍了 HPA 的一些原理以及发展的趋势,在下一篇文章中,咱们会为你们讲解如何开启 v2beta1 与 v2beta2 的。

相关文章
相关标签/搜索