人工智能实战 第2次做业 郑浩

项目 内容
这个做业属于哪一个课程 人工智能实战 2019(北京航空航天大学)
这个做业的要求在哪里 第二次做业 - 双变量的反向传播
我在这个课程的目标是 了解人工智能的基础理论知识,锻炼实践能力
这个做业在哪一个具体方面帮助我实现目标 学习神经网络的双变量反向传播,并经过代码实践来练习
做业正文 见下文
其余参考文献

1.做业要求

  • 根据课堂内容和示例代码完成双变量的反向传播代码
  • 给出相应的结果和偏差
  • 给出本身的思考和比较

2.题目

\(x=2*w+3*b\)
\(y=2*b+1\)
\(z=x*y\)
给定\(w\)\(b\)以及\(z\)的值,根据反向传播原理来更新\(w\),\(b\)的值,并前向计算\(z\)的值,不断循环,直到\(z\)与目标的偏差在容许范围以内。python

3.解题思路

见课堂课件内容网络

4.代码

  • 在每次迭代中都从新计算\(\Delta b\),\(\Delta w\)的贡献值:
target_z=150.0
min=1e-5
w=3.0
b=4.0
x=2*w+3*b
y=2*b+1
z=x*y
delta_z=abs(z-target_z)
count=0
print("double variable new: w, b -----")
print("count=%d,w=%.6f,b=%.6f,z=%.6f,delta_z=%.6f"%(count,w,b,z,delta_z))
while delta_z>min:
    count+=1
    factor_b=2*x+3*y
    factor_w=2*y
    delta_b=((z-target_z)/(2*factor_b))
    delta_w=((z-target_z)/(2*factor_w))
    print("count=%d,factor_b=%.6f,factor_w=%.6f,delta_b=%.6f,delta_w=%.6f"%(count,factor_b,factor_w,delta_b,delta_w))
    w=w-delta_w
    b=b-delta_b
    x=2*w+3*b
    y=2*b+1
    z=x*y
    delta_z=abs(z-target_z)
    print("w=%.6f,b=%.6f,z=%.6f,delta_z=%.6f"%(w,b,z,delta_z))
print("done!")
print("final b=%.6f\nfinal w=%.6f"%(b,w))
  • 运行结果及偏差:
double variable new: w, b -----
count=0,w=3.000000,b=4.000000,z=162.000000,delta_z=12.000000
count=1,factor_b=63.000000,factor_w=18.000000,delta_b=0.095238,delta_w=0.333333
w=2.666667,b=3.904762,z=150.181406,delta_z=0.181406
count=2,factor_b=60.523810,factor_w=17.619048,delta_b=0.001499,delta_w=0.005148
w=2.661519,b=3.903263,z=150.000044,delta_z=0.000044
count=3,factor_b=60.485234,factor_w=17.613053,delta_b=0.000000,delta_w=0.000001
w=2.661517,b=3.903263,z=150.000000,delta_z=0.000000
done!
final b=3.903263
final w=2.661517
  • 没有在每次迭代中都从新计算\(\Delta b\),\(\Delta w\)的贡献值:
target_z=150.0
min=1e-5
w=3.0
b=4.0
x=2*w+3*b
y=2*b+1
z=x*y
delta_z=abs(z-target_z)
count=0
print("double variable: w, b -----")
print("count=%d,w=%.6f,b=%.6f,z=%.6f,delta_z=%.6f"%(count,w,b,z,delta_z))
factor_b=2*x+3*y
factor_w=2*y
while delta_z>min:
    count+=1
    delta_b=((z-target_z)/(2*factor_b))
    delta_w=((z-target_z)/(2*factor_w))
    print("count=%d,delta_b=%.6f,delta_w=%.6f"%(count,delta_b,delta_w))
    w=w-delta_w
    b=b-delta_b
    x=2*w+3*b
    y=2*b+1
    z=x*y
    delta_z=abs(z-target_z)
    print("w=%.6f,b=%.6f,z=%.6f,delta_z=%.6f"%(w,b,z,delta_z))
print("done!")
print("final b=%.6f\nfinal w=%.6f"%(b,w))
  • 运行结果及偏差:
double variable: w, b -----
count=0,w=3.000000,b=4.000000,z=162.000000,delta_z=12.000000
count=1,delta_b=0.095238,delta_w=0.333333
w=2.666667,b=3.904762,z=150.181406,delta_z=0.181406
count=2,delta_b=0.001440,delta_w=0.005039
w=2.661628,b=3.903322,z=150.005526,delta_z=0.005526
count=3,delta_b=0.000044,delta_w=0.000154
w=2.661474,b=3.903278,z=150.000170,delta_z=0.000170
count=4,delta_b=0.000001,delta_w=0.000005
w=2.661469,b=3.903277,z=150.000005,delta_z=0.000005
done!
final b=3.903277
final w=2.661469

5.思考和比较

能够看到,当每次迭代都从新计算\(\Delta b\),\(\Delta w\)的贡献值时,迭代次数明显比不从新计算\(\Delta b\),\(\Delta w\)的贡献值要少,收敛速度更快。可是,咱们把偏差按1:1分配到\(b\)\(w\)上未必是合理的。若咱们按当地梯度来分配,或许能获得更快的降低速度。学习

相关文章
相关标签/搜索