线性代数笔记23——矩阵的对角化和方幂

特征值矩阵   假设A有n个线性无关的特征向量x1,x2……xn,这些特征向量按列组成矩阵S,S称为特征向量矩阵。来看一下A乘以S会得到什么:   最终得到了S和一个以特征值为对角线的对角矩阵的乘积,这个对角矩阵就是特征值矩阵,用Λ表示:   没有人关心线性相关的特征向量,上式有意义的前提是S由n个线性无关的特征向量组成,这意味着S可逆,等式两侧可以同时左乘S-1:   AS=SΛ和S-1AS=Λ
相关文章
相关标签/搜索