卷积神经网络CNN

卷积神经网络(CNN)的基本架构通常包括卷积层,池化层,全链层三大层次,其中不同的层中可能还会包括一些非线性变化(RELU函数)、数据归一化处理、dropoout等。我们常听说的LeNet-5、AlexNet、VGG、ResNet等都是卷积神经网络,而且都是由这些层组成,只是每个网络的层数不一样,所达到的分类效果也不一样。神经网络的深度(depth)和宽度(width)是表征网络复杂度的两个核心因
相关文章
相关标签/搜索