机器学习实战(四)—密度聚类算法DBSCAN

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个出现得比较早(1996年),比较有代表性的基于密度的聚类算法。算法的主要目标是相比基于划分的聚类方法和层次聚类方法,需要更少的领域知识来确定输入参数;发现任意形状的聚簇;在大规模数据库上更好的效率。DBSCAN能够将足够高密度的区域划分成簇,并能在具有噪声的空
相关文章
相关标签/搜索