Logistic回归的基本思想与公式推导

讲前小碎话 Logistic回归是一种线性分类模型,通常用来解决线性二分类或多分类问题。无论是在李航老师的《统计学习方法》书中,还是在吴恩达老师的机器学习课程中,都是先假设随机变量x服从Logistic分布,即有如下的分布函数和概率密度函数: 可是为什么定义这样的分布函数和概率密度函数,对于初学者来说,还是很难理解的。我们从Logistic回归的来源(也就是从贝叶斯学习发展来的)来理解其的基本思想
相关文章
相关标签/搜索