[机器学习算法]XGBoost算法是如何一步一步推导的

简介 XGBoost算法是以CART为基分类器的集成学习方法之一,由于其出色的运算效率和预测准确率在数据建模比赛中得到广泛的应用。与随机森林赋予每一颗决策树相同的投票权重不同,XGBoost算法中下一棵决策树的生成和前一棵决策树的训练和预测相关(通过对上一轮决策树训练准确率较低的样本赋予更高的学习权重来提高模型准确率)。相比于其他集成学习算法,XGBoost一方面通过引入正则项和列抽样的方法提高了
相关文章
相关标签/搜索