基于邻域的算法主要分为两类,一类是基于用户的协同过滤算法,另外一类是基于物品的协同过滤算法。咱们首先介绍基于用户的协同过滤算法。python
基于用户的协同过滤算法是最古老的算法了,它标志着推荐系统的诞生。当一个用户甲须要个性化推荐时,首先找到那些跟他兴趣类似的用户,而后把那些用户喜欢的,甲没有据说过的物品推荐给用户甲,那么这种方式就叫作基于用户的协同过滤算法。git
那么,这个算法包含两个步骤:github
咱们用用户行为的类似度来表示兴趣的类似度。对于用户\(u\)和用户\(v\),\(N(u)\)和\(N(v)\)表示各自有过正反馈的物品集合。那么咱们用Jaccard公式表示用户\(u\)和用户\(v\)之间的兴趣类似度。算法
另外也能够经过余弦类似度进行计算app
余弦类似度的计算代码为dom
def UserSimilarity(train): W = dict() for u in train.keys(): for v in train.keys(): if u == v: continue W[u][v] = len(train[u] & train[v]) W[u][v] /= math.sqrt(len(train[u]) * len(train[v]) * 1.0) return W
若是这样去计算的话,在用户很是大的时候会很是耗时,由于不少用户之间并无对相同的物品产生过行为,算法也把时间浪费在计算用户兴趣类似度上。那么咱们能够对公式分子部分交集不为空的部分。函数
创建物品到用户的倒排表,对于每一个物品都保存对该物品产生过行为的用户列表。测试
def UserSimilarity(train): # build inverse table for item_users item_users = dict() for u, items in train.items(): for i in items.keys(): if i not in item_users: item_users[i] = set() item_users[i].add(u) #calculate co-rated items between users C = dict() N = dict() for i, users in item_users.items(): for u in users: N[u] += 1 for v in users: if u == v: continue C[u][v] += 1 # calculate finial similarity matrix W W = dict() for u, related_users in C.items(): for v, cuv in related_users.items(): W[u][v] = cuv / math.sqrt(N[u] * N[v]) return W
有了其余用户的对某个物品\(i\)感兴趣的评分,那么根据类似度能够计算出用户\(u\)对物品\(i\)的感兴趣评分为:ui
其中\(S(u,K)\)是与用户\(u\)最类似的K个用户。由于使用的是单一行为的隐反馈数据,因此全部的评分都为1。另外还能够对用户的类似度进行改进,好比对冷门物品的兴趣更能反应他们的兴趣类似度。因此能够加上热门物品类似度的惩罚。spa
咱们用上一篇介绍的MovieLens数据集,以及之前介绍的评测方式来把代码串起来,代码来自于参考里面的github,整体代码为:
import random import math import time from tqdm import tqdm def timmer(func): def wrapper(*args, **kwargs): start_time = time.time() res = func(*args, **kwargs) stop_time = time.time() print('Func %s, run time: %s' % (func.__name__, stop_time - start_time)) return res return wrapper class Dataset(): def __init__(self, fp): # fp: data file path self.data = self.loadData(fp) @timmer def loadData(self, fp): data = [] for l in open(fp): data.append(tuple(map(int, l.strip().split('::')[:2]))) return data @timmer def splitData(self, M, k, seed=1): ''' :params: data, 加载的全部(user, item)数据条目 :params: M, 划分的数目,最后须要取M折的平均 :params: k, 本次是第几回划分,k~[0, M) :params: seed, random的种子数,对于不一样的k应设置成同样的 :return: train, test ''' train, test = [], [] random.seed(seed) for user, item in self.data: # 这里与书中的不一致,本人认为取M-1较为合理,因randint是左右都覆盖的 if random.randint(0, M - 1) == k: test.append((user, item)) else: train.append((user, item)) # 处理成字典的形式,user->set(items) def convert_dict(data): data_dict = {} for user, item in data: if user not in data_dict: data_dict[user] = set() data_dict[user].add(item) data_dict = {k: list(data_dict[k]) for k in data_dict} return data_dict return convert_dict(train), convert_dict(test) class Metric(): def __init__(self, train, test, GetRecommendation): ''' :params: train, 训练数据 :params: test, 测试数据 :params: GetRecommendation, 为某个用户获取推荐物品的接口函数 ''' self.train = train self.test = test self.GetRecommendation = GetRecommendation self.recs = self.getRec() # 为test中的每一个用户进行推荐 def getRec(self): recs = {} for user in self.test: rank = self.GetRecommendation(user) recs[user] = rank return recs # 定义精确率指标计算方式 def precision(self): all, hit = 0, 0 for user in self.test: test_items = set(self.test[user]) rank = self.recs[user] for item, score in rank: if item in test_items: hit += 1 all += len(rank) return round(hit / all * 100, 2) # 定义召回率指标计算方式 def recall(self): all, hit = 0, 0 for user in self.test: test_items = set(self.test[user]) rank = self.recs[user] for item, score in rank: if item in test_items: hit += 1 all += len(test_items) return round(hit / all * 100, 2) # 定义覆盖率指标计算方式 def coverage(self): all_item, recom_item = set(), set() for user in self.test: for item in self.train[user]: all_item.add(item) rank = self.recs[user] for item, score in rank: recom_item.add(item) return round(len(recom_item) / len(all_item) * 100, 2) # 定义新颖度指标计算方式 def popularity(self): # 计算物品的流行度 item_pop = {} for user in self.train: for item in self.train[user]: if item not in item_pop: item_pop[item] = 0 item_pop[item] += 1 num, pop = 0, 0 for user in self.test: rank = self.recs[user] for item, score in rank: # 取对数,防止因长尾问题带来的被流行物品所主导 pop += math.log(1 + item_pop[item]) num += 1 return round(pop / num, 6) def eval(self): metric = { 'Precision': self.precision(), 'Recall': self.recall(), 'Coverage': self.coverage(), 'Popularity': self.popularity() } print('Metric:', metric) return metric # 1. 随机推荐 def Random(train, K, N): ''' :params: train, 训练数据集 :params: K, 可忽略 :params: N, 超参数,设置取TopN推荐物品数目 :return: GetRecommendation,推荐接口函数 ''' items = {} for user in train: for item in train[user]: items[item] = 1 def GetRecommendation(user): # 随机推荐N个未见过的 user_items = set(train[user]) rec_items = {k: items[k] for k in items if k not in user_items} rec_items = list(rec_items.items()) random.shuffle(rec_items) return rec_items[:N] return GetRecommendation # 2. 热门推荐 def MostPopular(train, K, N): ''' :params: train, 训练数据集 :params: K, 可忽略 :params: N, 超参数,设置取TopN推荐物品数目 :return: GetRecommendation, 推荐接口函数 ''' items = {} for user in train: for item in train[user]: if item not in items: items[item] = 0 items[item] += 1 def GetRecommendation(user): # 随机推荐N个没见过的最热门的 user_items = set(train[user]) rec_items = {k: items[k] for k in items if k not in user_items} rec_items = list( sorted(rec_items.items(), key=lambda x: x[1], reverse=True)) return rec_items[:N] return GetRecommendation # 3. 基于用户余弦类似度的推荐 def UserCF(train, K, N): ''' :params: train, 训练数据集 :params: K, 超参数,设置取TopK类似用户数目 :params: N, 超参数,设置取TopN推荐物品数目 :return: GetRecommendation, 推荐接口函数 ''' # 计算item->user的倒排索引 item_users = {} for user in train: for item in train[user]: if item not in item_users: item_users[item] = [] item_users[item].append(user) # 计算用户类似度矩阵 sim = {} num = {} for item in item_users: users = item_users[item] for i in range(len(users)): u = users[i] if u not in num: num[u] = 0 num[u] += 1 if u not in sim: sim[u] = {} for j in range(len(users)): if j == i: continue v = users[j] if v not in sim[u]: sim[u][v] = 0 sim[u][v] += 1 for u in sim: for v in sim[u]: sim[u][v] /= math.sqrt(num[u] * num[v]) # 按照类似度排序 sorted_user_sim = {k: list(sorted(v.items(), \ key=lambda x: x[1], reverse=True)) \ for k, v in sim.items()} # 获取接口函数 def GetRecommendation(user): items = {} seen_items = set(train[user]) for u, _ in sorted_user_sim[user][:K]: for item in train[u]: # 要去掉用户见过的 if item not in seen_items: if item not in items: items[item] = 0 items[item] += sim[user][u] recs = list(sorted(items.items(), key=lambda x: x[1], reverse=True))[:N] return recs return GetRecommendation # 4. 基于改进的用户余弦类似度的推荐 def UserIIF(train, K, N): ''' :params: train, 训练数据集 :params: K, 超参数,设置取TopK类似用户数目 :params: N, 超参数,设置取TopN推荐物品数目 :return: GetRecommendation, 推荐接口函数 ''' # 计算item->user的倒排索引 item_users = {} for user in train: for item in train[user]: if item not in item_users: item_users[item] = [] item_users[item].append(user) # 计算用户类似度矩阵 sim = {} num = {} for item in item_users: users = item_users[item] for i in range(len(users)): u = users[i] if u not in num: num[u] = 0 num[u] += 1 if u not in sim: sim[u] = {} for j in range(len(users)): if j == i: continue v = users[j] if v not in sim[u]: sim[u][v] = 0 # 相比UserCF,主要是改进了这里 sim[u][v] += 1 / math.log(1 + len(users)) for u in sim: for v in sim[u]: sim[u][v] /= math.sqrt(num[u] * num[v]) # 按照类似度排序 sorted_user_sim = {k: list(sorted(v.items(), \ key=lambda x: x[1], reverse=True)) \ for k, v in sim.items()} # 获取接口函数 def GetRecommendation(user): items = {} seen_items = set(train[user]) for u, _ in sorted_user_sim[user][:K]: for item in train[u]: # 要去掉用户见过的 if item not in seen_items: if item not in items: items[item] = 0 items[item] += sim[user][u] recs = list(sorted(items.items(), key=lambda x: x[1], reverse=True))[:N] return recs return GetRecommendation class Experiment(): def __init__(self, M, K, N, fp='./ml-1m/ratings.dat', rt='UserCF'): ''' :params: M, 进行多少次实验 :params: K, TopK类似用户的个数 :params: N, TopN推荐物品的个数 :params: fp, 数据文件路径 :params: rt, 推荐算法类型 ''' self.M = M self.K = K self.N = N self.fp = fp self.rt = rt self.alg = {'Random': Random, 'MostPopular': MostPopular, \ 'UserCF': UserCF, 'UserIIF': UserIIF} # 定义单次实验 @timmer def worker(self, train, test): ''' :params: train, 训练数据集 :params: test, 测试数据集 :return: 各指标的值 ''' getRecommendation = self.alg[self.rt](train, self.K, self.N) metric = Metric(train, test, getRecommendation) return metric.eval() # 屡次实验取平均 @timmer def run(self): metrics = {'Precision': 0, 'Recall': 0, 'Coverage': 0, 'Popularity': 0} dataset = Dataset(self.fp) for ii in range(self.M): train, test = dataset.splitData(self.M, ii) print('Experiment {}:'.format(ii)) metric = self.worker(train, test) metrics = {k: metrics[k] + metric[k] for k in metrics} metrics = {k: metrics[k] / self.M for k in metrics} print('Average Result (M={}, K={}, N={}): {}'.format(\ self.M, self.K, self.N, metrics)) # 1. random实验 M, N = 8, 10 K = 0 # 为保持一致而设置,随便填一个值 random_exp = Experiment(M, K, N, rt='Random') random_exp.run() # 2. MostPopular实验 M, N = 8, 10 K = 0 # 为保持一致而设置,随便填一个值 mp_exp = Experiment(M, K, N, rt='MostPopular') mp_exp.run() # 3. UserCF实验 M, N = 8, 10 for K in [5, 10, 20, 40, 80, 160]: cf_exp = Experiment(M, K, N, rt='UserCF') cf_exp.run() # 4. UserIIF实验 M, N = 8, 10 K = 80 # 与书中保持一致 iif_exp = Experiment(M, K, N, rt='UserIIF') iif_exp.run()