本文是关于Vue3源码的reactive响应式模块重点分析, 本身看了源码,运行测试用例,同时参考了当前网上的一些优秀的源码分析,在此感谢,颇有帮助;关于本文,若有不妥之处,欢迎之处~vue
本文只分析reactive
模块, 由于其余模块还未阅读, [捂脸]react
注:git
Object, Array, Set, Map, WeakMap, WeakSet
几种类型string, number, boolean 及isObservable
等const isRefSymbol = Symbol() // 生成一个惟一key
export interface Ref<T = any> {
[isRefSymbol]: true // 用此惟一key,来作Ref接口的一个描述符,让isRef函数作类型判断
value: UnwrapRef<T> // Ref类型的值是UnwrapRef类型,下面有定义
}
// 经过判断val 是否为对象(非null), 来决定是否采用reactive进行Proxy代理
const convert = <T extends unknown>(val: T): T =>
isObject(val) ? reactive(val) : val
}
// 根据_isRef判断是不是Ref类型
export function isRef(r: any): r is Ref {
return r ? r._isRef === true : false
}
// 重载
export function ref<T extends Ref>(raw: T): T
export function ref<T>(raw: T): Ref<T>
export function ref<T = any>(): Ref<T>
export function ref(raw?: unknown) {
// 非Ref直接返回,不处理
if (isRef(raw)) {
return raw
}
// 是Ref类型,进行转换, 即只有是Ref类型同时非null的对象须要进行代理
raw = convert(raw)
const r = {
_isRef: true,
// get 和 set处理与Proxy相似,都是依赖追踪和响应依赖
get value() {
// 访问属性时, 依赖追踪ref类型的value属性, 并返回通过转换后的值
track(r, TrackOpTypes.GET, 'value')
return raw
},
set value(newVal) {
// 更改属性值时, 触发响应, 并对新值进行转换处理
raw = convert(newVal)
trigger(
r,
TriggerOpTypes.SET,
'value',
__DEV__ ? { newValue: newVal } : void 0
)
}
}
// 最后返回组装后的Ref
return r
}
复制代码
Ref函数能够处理任何类型, 将其转化为响应式对象, 但通常用来处理基本类型(string/number/boolean等)github
测试:typescript
setup() {
const state = ref(0) // value => ref
console.log(state.value) // 0
state.value = 1
console.log(state.value) // 1
}
复制代码
上面的例子, ref函数的参数是数字类型0, 经过添加getter和setter方法, 使其成为响应式数据, 最后通过处理后成为Ref类型(包含_isRef, value属性)并返回. 当访问.value属性时触发getter, 同时进行依赖追踪track; 当改变value属性值时, 从新对新值进行上一步转换处理npm
type UnwrapArray<T> = { [P in keyof T]: UnwrapRef<T[P]> }
// Recursively unwraps nested value bindings.
// 根据泛型T类型递归地展开(object, Array, ComputedRef, Ref)嵌套值并绑定, 主要做用是在如下嵌套状况中,关于ref类型的值,不用使用`.value`访问, 直接解构
// 如下类型声明是访问对象属性obj['prop'], 返回属性值
export type UnwrapRef<T> = {
cRef: T extends ComputedRef<infer V> ? UnwrapRef<V> : T
ref: T extends Ref<infer V> ? UnwrapRef<V> : T
array: T extends Array<infer V> ? Array<UnwrapRef<V>> & UnwrapArray<T> : T
object: { [K in keyof T]: UnwrapRef<T[K]> }
}[T extends ComputedRef<any>
? 'cRef'
: T extends Ref
? 'ref'
: T extends Array<any>
? 'array'
: T extends Function | CollectionTypes
? 'ref' // bail out on types that shouldn't be unwrapped : T extends object ? 'object' : 'ref'] 复制代码
UnwrapRef做为类型, 在reactive模块中, 主要用来约束代理后的数据, 自动解嵌套, 涉及到的地方有如下两处:api
第一是在reactive.ts中用来约束定义reactive返回值数组
// reactive.ts
type UnwrapNestedRefs<T> = T extends Ref ? T : UnwrapRef<T>
export function reactive(T = any): UnwrapNestedRefs<T> 复制代码
第二是在ref.ts中, 用来约束ref函数的返回值的value属性浏览器
// ref.ts
export interface Ref<T = any> {
[isRefSymbol]: true
value: UnwrapRef<T>
}
复制代码
综合一块儿举个栗子:缓存
// reactive<Ref<{[key]: Ref}>>
setup() {
const r1 = ref({a: ref(0)})
const r = reactive(r1)
console.log(r.value.a) // 0, 此处直接解嵌套, 不用r.value.a.value
}
复制代码
上面的栗子, 结构是reactive<Ref<{[key]: Ref}>>
, 当reactive函数传入Ref类型, 返回值UnwrapNestedRefs<T>
类型根据三元条件, 最终为T(即,传入的参数);ref({a: ref(0)})
返回{_isRef:true, value: {a:ref(0)}}
根据Ref类型定义, 可知value属性是UnwrapRefs类型, 因此可自动展开嵌套<{[key]:Ref}>, 递归的流程是Object -> Ref -> Ref -> T. 这块可能有点绕, 须要本身好好捋捋~
如下是源码ref.spec.ts文件关于此块的相关测试用例:
我的以为(实际不清楚), Vue3这样设计,是为了简化结构,相似ES6解构的思想, 在嵌套的结构中, 自动展开嵌套的值或Ref
具体可查看源码的ref.spec.ts文件
export function toRefs<T extends object>( object: T ): { [K in keyof T]: Ref<T[K]> } {
if (__DEV__ && !isReactive(object)) {
console.warn(`toRefs() expects a reactive object but received a plain one.`)
}
const ret: any = {}
// 遍历对象的全部key,将其值转化为Ref数据
for (const key in object) {
ret[key] = toProxyRef(object, key)
}
return ret
}
function toProxyRef<T extends object, K extends keyof T>( object: T, key: K ): Ref<T[K]> {
return {
_isRef: true,
get value(): any {
return object[key]
},
set value(newVal) {
object[key] = newVal
}
} as any
}
复制代码
经过toRefs(object)
函数, 其中参数Object 只有是响应式数据reactive, 返回的数据才具备响应式; 在开发环境,同时isReative(object)为false, 将会给出警告.
toRefs 解决的是对象的解构丢失原始数据引用的问题, 开发者在函数中错误的解构 reactive,来返回基本类型。 const { x, y } = = reactive({ x: 1, y: 2 })
,这样会使 x, y 失去响应式,因而官方提出了 toRefs 方案,在函数返回时,将 reactive 转为 refs,经过遍历对象,将每一个属性值都转成Ref数据,这样解构出来的仍是Ref数据,天然就保持了响应式数据的引用, 来避免这种状况。
reactive: 本库的核心方法,传递一个object类型的原始数据,经过Proxy,返回一个代理数据。在这过程当中,劫持了原始数据的任何读写操做。进而实现访问或改变代理数据时,能触发依赖其的监听函数effect。
// WeakMaps that store {raw <-> observed} pairs.
const rawToReactive = new WeakMap<any, any>() // 原始数据 和 响应式数据的映射
const reactiveToRaw = new WeakMap<any, any>() // 响应式数据 和 原始数据的映射
const rawToReadonly = new WeakMap<any, any>() // 原始数据 和 只读的映射
const readonlyToRaw = new WeakMap<any, any>() // 只读数据 和 原始数据的映射
// WeakSets for values that are marked readonly or non-reactive during
// observable creation.
const readonlyValues = new WeakSet<any>()
const nonReactiveValues = new WeakSet<any>() // nonReactiveValues 存储非响应式对象, 如: DOM
const collectionTypes = new Set<Function>([Set, Map, WeakMap, WeakSet])
const isObservableType = /*#__PURE__*/ makeMap(
'Object,Array,Map,Set,WeakMap,WeakSet'
)
// 能够被观察的值同时具有的条件:
// 非Vue对象 && 非虚拟节点 && 在可被观察的类型(Object,Array,Map,Set,WeakMap,WeakSet)中 && 不是非响应式
// toRawType: 获取原生的数据类型
// makeMap: 过滤类型, 返回筛选函数
const canObserve = (value: any): boolean => {
return (
!value._isVue &&
!value._isVNode &&
isObservableType(toRawType(value)) &&
!nonReactiveValues.has(value)
)
}
// only unwrap nested ref 只展开嵌套ref
type UnwrapNestedRefs<T> = T extends Ref ? T : UnwrapRef<T>
export function reactive<T extends object>(target: T): UnwrapNestedRefs<T>
export function reactive(target: object) {
// if trying to observe a readonly proxy, return the readonly version.
// 若target在只读=>原生数据映射中, 直接返回
if (readonlyToRaw.has(target)) {
return target
}
// target is explicitly marked as readonly by user
// target 被用户标记为只读, 按只读类别处理
if (readonlyValues.has(target)) {
return readonly(target)
}
// 调用createReactiveObject()函数建立响应式对象
return createReactiveObject(
target, // 须要被代理的目标对象
rawToReactive, // 原生=>响应式数据的映射(weakMap)
reactiveToRaw, // 响应式=>原生数据的映射(weakMap)
mutableHandlers, // 可变数据(Object,Array)的处理回调
mutableCollectionHandlers // 可变集合(Map,Set,WeakMap,WeakSet)的处理回调
)
}
// 建立响应式对象
function createReactiveObject(
target: unknown,
toProxy: WeakMap<any, any>,
toRaw: WeakMap<any, any>,
baseHandlers: ProxyHandler<any>,
collectionHandlers: ProxyHandler<any>
) {
// 情形1. target非对象直接返回
if (!isObject(target)) {
if (__DEV__) {
console.warn(`value cannot be made reactive: ${String(target)}`)
}
return target
}
// target already has corresponding Proxy
// 情形2. target已经有对应的Proxy代理(已经被代理过)
let observed = toProxy.get(target)
if (observed !== void 0) {
return observed
}
// target is already a Proxy
// 情形3. target自己是一个Proxy对象, 直接返回
if (toRaw.has(target)) {
return target
}
// only a whitelist of value types can be observed.
// 情形4. 不在被观察的白名单中
if (!canObserve(target)) {
return target
}
// 根据target.cnnstructor区分不一样target的handler, 关于二者此处不展开讲,可自行阅读源码
// baseHandlers: 普通对象的handler对象
// collectionHandlers: Set/WeakSet/Map/WeakMap的handler对象
const handlers = collectionTypes.has(target.constructor)
? collectionHandlers
: baseHandlers
observed = new Proxy(target, handlers)
toProxy.set(target, observed) // 存储原生=>响应式数据映射表, 联系情形2, 可知目的: 防止reactive已经被reactive的值, 致使屡次Proxy
toRaw.set(observed, target) // 存储响应式=>原生数据映射表, 联系情形3, 可知目的: 防止reactive已经被reactive的值, 致使屡次Proxy
return observed
}
复制代码
举例:
const origin = {count: 0, info: {name: 'xxl', age: 18}}
const state = reactive(origin)
const fn1 = () => {console.log(state.count)}
const fn2 = () => {console.log(state.info.name)}
const fn3 = () => {console.log(state.info.name, state.count)}
// 依赖收集
const effect1 = effect(fn1)
const effect2 = effect(fn2)
const effect3 = effect(fn3)
// 响应触发
state.count
state.count++
state.info.name = 'ada'
复制代码
初始化阶段(代理):
reactive(target:any):UnwrapNestedRef
=> 调用 CreateReactiveObject(target, toProxy, toRaw, baseHandlers, collectionHandlers)
=> 调用 new Proxy(target, baseHandlers|collectionHandlers), 返回observed
若target是深层结构, 重复以上步骤
复制代码
该模块流程图以下:
effect 相似于 Vue2.x中的 Watcher(观察者)
首先先看下依赖收集器:
type Dep = Set<ReactiveEffect>
type KeyToDepMap = Map<any, Dep>
const targetMap = new WeakMap<any, KeyToDepMap>()
复制代码
上面的代码能够用如下图来更清晰的表示:
targetMap:WeakMap = <target:any, Map<target.key:any, Set<ReactiveEffect>>>
const origin = {count: 0, info: {name: 'xxl', age: 18}}
const statte = reactive(origin)
effect(() => {consoel.log(state.count)}) // effect1
effect(() => {consoel.log(state.info.name)}) // effect2
effect(() => {consoel.log(state.info.name +'is'+ state.count)}) // effect3
复制代码
上面代码的依赖以下:
综合以上, 从代码设计来看, 我的感受和Vue2.x的Dep依赖收集器思路基本相同
// 监听函数接口(混合类型接口)
export interface ReactiveEffect<T = any> {
(): T // 函数类型
_isEffect: true // 监听函数的标志
active: boolean // 监听函数是否在运行, stop后为false
raw: () => T // raw === fn , 监听函数的原始函数
deps: Array<Dep> // 包含与此effect相关的全部Dep的数组
options: ReactiveEffectOptions // 配置项, 见下
}
// 监听函数配置项
export interface ReactiveEffectOptions {
lazy?: boolean // 是否延迟建立监听函数
computed?: boolean
scheduler?: (run: Function) => void //调度器,能够看做是节点,当effect由于依赖改变而须要运行时,须要手动运行调度器运行
onTrack?: (event: DebuggerEvent) => void // 追踪事件,监听effect内的set操做
onTrigger?: (event: DebuggerEvent) => void // 触发事件,监听effect的依赖项set
onStop?: () => void
}
// 根据监听函数的标志`_isEffect`来判断是否为监听函数
export function isEffect(fn: any): fn is ReactiveEffect {
return fn != null && fn._isEffect === true
}
// EMPTY_OBJ = {}
export function effect<T = any>(
fn: () => T,
options: ReactiveEffectOptions = EMPTY_OBJ
): ReactiveEffect<T> {
//若是fn已是effect,则将fn重置为它的原始函数
if (isEffect(fn)) {
fn = fn.raw
}
// 建立监听函数
const effect = createReactiveEffect(fn, options) // function reactiveEffect(...args: unknown[]): unknown {return run(effect, fn, args)}
if (!options.lazy) {
effect() // options.lazy 默认为false, 因此当即执行一次监听函数
}
return effect
}
// 建立 effect
function createReactiveEffect<T = any>(
fn: () => T,
options: ReactiveEffectOptions
): ReactiveEffect<T> {
const effect = function reactiveEffect(...args: unknown[]): unknown {
return run(effect, fn, args) // 执行effect函数时, 调用下面的run()
} as ReactiveEffect
effect._isEffect = true
effect.active = true
effect.raw = fn // 把回调fn赋值给.raw属性
effect.deps = []
effect.options = options
return effect
}
// effect堆栈
export const effectStack: ReactiveEffect[] = []
function run(effect: ReactiveEffect, fn: Function, args: unknown[]): unknown {
if (!effect.active) { // 当调用stop()中止监听函数的响应式, 直接返回执行的原始函数, 不会被依赖收集
return fn(...args)
}
if (!effectStack.includes(effect)) {
cleanup(effect) // 每次执行run(), 清除该effect下的deps, 是为了防止 fn 函数中访问的响应数据属性改动的状况,此时须要从新收集相关属性依赖
try {
effectStack.push(effect) // 运行前先把effect压入栈
return fn(...args) // 执行原始函数并返回, 由于fn中引用了依赖数据, 执行fn触发track依赖收集
} finally {
effectStack.pop() // 运行完再把effect推出栈
}
}
}
// 依赖收集
export function track(target: object, type: TrackOpTypes, key: unknown) {
if (!shouldTrack || effectStack.length === 0) {
return
}
const effect = effectStack[effectStack.length - 1] // 取出栈顶的effect, 便是与当前key相关的effect, 由于执行effect()函数=>run()函数, push入该effect
let depsMap = targetMap.get(target)
if (depsMap === void 0) {
targetMap.set(target, (depsMap = new Map()))
}
let dep = depsMap.get(key)
if (dep === void 0) {
depsMap.set(key, (dep = new Set()))
}
if (!dep.has(effect)) {
dep.add(effect) // 为dep添加相关effect
effect.deps.push(dep) // 并把与此effect相关的dep全push到它的deps数组中
if (__DEV__ && effect.options.onTrack) {
effect.options.onTrack({
effect,
target,
type,
key
})
}
}
}
复制代码
依赖收集阶段:
橙色线路
是依赖收集的过程, 下面是具体的代码调用过程:
effect(T=any)
1 --> createReactiveEffect(fn:()=>T, options: ReactiveEffectOptions):ReactiveEffect<T>, 返回effect
2 --> 先执行一次`effect()`
3 --> 调用 run(effect: ReactiveEffect, fn: Function, args: unknown[]): 1. cleanup(effect) => 2. effectStack.push(effect) => 3. fn(...args) => fn()中含有依赖数据, 触发getter `track()` 依赖收集开始({dep.add(effect); effect.deps.push(dep);}) => 4. effectStack.pop(effect)
复制代码
// 触发响应, 根据操做类型获取effect, 并区分computed添加到队列以后遍历执行effect
export function trigger( target: object, type: OperationTypes, key?: unknown, extraInfo?: DebuggerEventExtraInfo ) {
const depsMap = targetMap.get(target)
if (depsMap === void 0) {
// never been tracked
return
}
const effects = new Set<ReactiveEffect>()
const computedRunners = new Set<ReactiveEffect>()
if (type === OperationTypes.CLEAR) {
// collection being cleared, trigger all effects for target
depsMap.forEach(dep => {
addRunners(effects, computedRunners, dep)
})
} else {
// schedule runs for SET | ADD | DELETE
if (key !== void 0) {
addRunners(effects, computedRunners, depsMap.get(key))
}
// also run for iteration key on ADD | DELETE 数组的push/pop
if (type === OperationTypes.ADD || type === OperationTypes.DELETE) {
const iterationKey = isArray(target) ? 'length' : ITERATE_KEY // 原始对象为数组
addRunners(effects, computedRunners, depsMap.get(iterationKey))
}
}
const run = (effect: ReactiveEffect) => {
scheduleRun(effect, target, type, key, extraInfo)
}
// Important: computed effects must be run first so that computed getters
// can be invalidated before any normal effects that depend on them are run.
// 必须先运行computed effects,以便computed getter可能在运行任何依赖于它们的normal effects以前失效
computedRunners.forEach(run)
effects.forEach(run)
}
// 添加effect
function addRunners( effects: Set<ReactiveEffect>, computedRunners: Set<ReactiveEffect>, effectsToAdd: Set<ReactiveEffect> | undefined ) {
if (effectsToAdd !== void 0) {
effectsToAdd.forEach(effect => {
if (effect.options.computed) {
computedRunners.add(effect)
} else {
effects.add(effect)
}
})
}
}
function scheduleRun( effect: ReactiveEffect, target: object, type: OperationTypes, key: unknown, extraInfo?: DebuggerEventExtraInfo ) {
if (__DEV__ && effect.options.onTrigger) {
const event: DebuggerEvent = {
effect,
target,
key,
type
}
effect.options.onTrigger(extraInfo ? extend(event, extraInfo) : event)
}
if (effect.options.scheduler !== void 0) {
effect.options.scheduler(effect)
} else {
effect()
}
}
复制代码
响应触发阶段: 总体流程图图下(绿色线条
部分):
trigger(target: object, type: TriggerOpTypes, key?: unknown) => 根据TriggerOpTypes和key获取effects, 调用 addRunner(effects, computedRunners, effectsToAdd)分类, 分为effects(normal effects)和computedRunners(computed effects) => 遍历effects,执行回调函数run() => 调用scheduleRun()执行effect, 即fn()
复制代码
注
: 关于其中的具体实现细节,须要本身好好捋捋, 大多数是各类边界问题,可结合测试用例, 更加快速定位问题~
// 返回值是一个Ref类型数据
export function computed<T>(getter: ComputedGetter<T>): ComputedRef<T>
export function computed<T>(
options: WritableComputedOptions<T>
): WritableComputedRef<T>
export function computed<T>(
getterOrOptions: ComputedGetter<T> | WritableComputedOptions<T>
) {
let getter: ComputedGetter<T>
let setter: ComputedSetter<T>
if (isFunction(getterOrOptions)) {
getter = getterOrOptions
setter = __DEV__
? () => {
console.warn('Write operation failed: computed value is readonly')
}
: NOOP
} else {
getter = getterOrOptions.get
setter = getterOrOptions.set
}
let dirty = true
let value: T
// runner是effect函数, 返回effect
const runner = effect(getter, {
lazy: true,
// mark effect as computed so that it gets priority during trigger
// 将效果标记为计算,以便在触发期间得到优先级
computed: true,
// 由于这里设置的调度器,依赖触发tirgger事件只是将dirty变为true
scheduler: () => {
dirty = true
}
})
return {
_isRef: true,
// expose effect so computed can be stopped
effect: runner,
get value() {
if (dirty) {
value = runner()
dirty = false
}
// When computed effects are accessed in a parent effect, the parent
// should track all the dependencies the computed property has tracked.
// This should also apply for chained computed properties.
trackChildRun(runner) // computed(fn)的返回值再次被监听
return value
},
set value(newValue: T) {
setter(newValue)
}
} as any
}
// 让依赖computed的effect实现监听逻辑
function trackChildRun(childRunner: ReactiveEffect) {
if (effectStack.length === 0) {
return
}
// 获取父级effect
const parentRunner = effectStack[effectStack.length - 1]
// 遍历子级,也便是本effect,的deps
for (let i = 0; i < childRunner.deps.length; i++) {
const dep = childRunner.deps[i]
// 若是子级的某dep中没有父级effect,则将父级effect添加本dep中,而后更新父级effect的deps
if (!dep.has(parentRunner)) {
dep.add(parentRunner) // (1)
parentRunner.deps.push(dep) // (2)
}
}
}
复制代码
计算函数自身也是一个effect,以前咱们说过,它的deps存着全部存着它的dep。而这个dep又指向targetMap中的相应数据。 因为都是引用数据,因此只要把父级effect补充到computed.deps(见上面的(1):dep.add(parentRunner)
),就等同于作到了父级effect依赖于computed函数内部依赖的响应数据。
trackChildRun会将子Effect的依赖加入父Effect的依赖,这样在子Effect的依赖触发trigger事件时,子effect不会调用,但会把dirty变为true,父effect会调用,父effect内部对Ref值进行读操做,这时子effect调用将内部value改成新值。这样父effect就不会错过子effect的trigger事件了
例子以下:
const value = reactive({
foo: 1
})
const cValue = computed(() => value.foo) // effect 子
let dummy
// 父
effect(() => {
dummy = cValue.value
})
console.log(dummy) // 1
value.foo = 4 //dummy === 4
复制代码
而把computed.deps添加到父级effect的deps中(见上面的(2):parentRunner.deps.push(dep)
), 是为了链式操做(多个computed存在依赖关系), 例子以下:
const value = reactive({ foo: 0 })
const getter1 = () => value.foo
const getter2 = () => {
return c1.value + 1
}
const c1 = computed(getter1)
const c2 = computed(getter2)
let dummy
effect(() => {
dummy = c2.value
})
// console.log(dummy) // 1
value.foo++ // dummy === 2
复制代码
注: 这里也有点绕[一开始看可能头晕], 须要好好理解下,多看几遍代码, 也可本身注释下相关代码, 运行下测试用例
计算属性:
computed(fn) => 生成computed 的 effect[即依赖收集阶段中第1步], 并返回 Ref => 使用返回的 Ref的value, 触发它的getter, 将运行runner() 函数 => 依赖收集阶段的第3步
复制代码
对于基本数据类型,函数传递或者对象解构时,会丢失原始数据的引用,换言之,咱们无法让基本数据类型,或者解构后的变量(若是它的值也是基本数据类型的话),成为响应式的数据。
toRefs(object)
函数, 解决对象的解构丢失原始数据引用的问题 经过遍历对象,将每一个属性值都转成Ref数据,这样解构出来的仍是Ref数据,天然就保持了响应式数据的引用 toRefs 解决的问题就是,开发者在函数中错误的解构 reactive,来返回基本类型。const { x, y } = = reactive({ x: 1, y: 2 })
,这样会使 x, y 失去响应式,因而官方提出了 toRefs
方案,在函数返回时,将 reactive 转为 refs,来避免这种状况。总的来讲, reactive 目前支持的类型为 Object|Array|Map|Set|WeakMap|WeakSet , refs支持的类型为基本数据类型, toRefs解决对象解构赋值后引用丢失问题
具体可参考: vue-composition-api-rfc.netlify.com/#ref-vs-rea…
// test case:
test('toRefs', () => {
const a = reactive({
x: 1,
y: 2
})
const { x, y } = toRefs(a)
expect(isRef(x)).toBe(true)
expect(isRef(y)).toBe(true)
expect(x.value).toBe(1)
expect(y.value).toBe(2)
// source -> proxy
a.x = 2
a.y = 3
expect(x.value).toBe(2)
expect(y.value).toBe(3)
// proxy -> source
x.value = 3
y.value = 4
expect(a.x).toBe(3)
expect(a.y).toBe(4)
}
复制代码
function createGetter() {
return function get(target, key, receiver) {
const res = Reflect.get(target, key, receiver)
return isObject(res) ? reactive(res) : res // 经过对Reflect.get()的返回结果进行reactive递归调用, 达到深度侦测
}
}
复制代码
Q: reactive.ts中createReactiveObject函数中已经有toProxy.set(target, observed), 为啥还须要 toRaw.set(observed, target), 它存在的意义?
A: 具体可看文中该部分注释, 联系上下文, 主要是为了优化包装后的对象再次被传入的状况,防止屡次proxy, 其实二者都 起到了缓存的做用
Q: computed.ts 中 trackChildRun函数的做用? 或者能够说dep.add(parentRunner); parentRunner.deps.push(dep);
代码的做用分别是?
A:
1.parentRunner.deps.push(dep);
做用:
const value = reactive({ foo: 0 })
const getter1 = () => value.foo
const getter2 = () => {
return c1.value + 1
}
const c1 = computed(getter1)
const c2 = computed(getter2)
let dummy
effect(() => {
dummy = c2.value
})
// console.log(dummy)
value.foo++
复制代码
上面的代码的effect与dep的关系图以下:
parentRunner.deps.push(dep);
这句代码, 进行单元测试, 或是上面的代码, 将会发现effect3没法加入到foo对应的dep中, 是因为effect2.deps中没有关联到fooDep, 而从代码可知effect3的raw(即
()=>{dummy = c2.value}
)依赖于c2.value(即effect2中的raw), effect3是effect2的
parentRunner
, 去除
parentRunner.deps.push(dep);
后,失去依赖联系,故获得以下结果:
其中
effect1: 是指effect.raw = ()=>{value.foo}的effect
effect2: 是指effect.raw = ()=>{return c1.value + 1}的effect
effect3: 是指effect.raw = ()=>{dummy = c2.value}的effect
复制代码
关于这个问题, 可自行实验, [累死了]
2.dep.add(parentRunner)
做用:
// 依赖于computed的effect 依赖追踪
const value = reactive({
foo: 1
})
const cValue = computed(() => value.foo) // effect 子, const runner = effecf, 返回Ref
let dummy
// 父
effect(() => {
dummy = cValue.value
})
value.foo = 4
console.log(dummy)
// console.log(cValue.value)
复制代码
捋清了上面的问题,这个就很好解了,具体不详细描述了,理解不来,可在本身的草稿本画画~
说下关于如何调试阅读源码, 我本身的方法是:
npm install
, 再运行下 reactive模块下的测试用例 jest packages/reactivity/__tests__/xxxx.spec.ts
最后的最后, 说下本身的感受,不喜勿喷,看源码应该有耐心,可参考他人优秀的分析文章,再认真理思绪,同时最重要的是思考这样设计的用意,是否可再优化. 哈哈,终于写完了~~~
juejin.im/post/5d9da4…
juejin.im/post/5db837…
juejin.im/post/5d99be…
zhuanlan.zhihu.com/p/85978064
jooger.me/article/5da…
github.com/vuejs/rfcs/…