KNN Kmeans原理与不同

 KNN(K-Nearest Neighbor)介绍 k-近邻算法采用测量不同特征值之间的距离方法进行分类。 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高 适用数据范围:数值型和标称型 KNN的算法过程是是这样的: 从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据。
相关文章
相关标签/搜索