【图文并茂】通过实例理解word2vec之Skip-gram

点击上方,选择星标或置顶,每天给你送干货! 阅读大概需要9分钟 跟随小博主,每天进步一丢丢 作者: 猫猫 CSDN: 猫猫玩机器学习 导读 word2vec主要实现方法是Skip-gram和CBOW,CBOW的目标是根据上下文来预测当前词的概率,且上下文所有的词对当前词出现概率的影响的权重是一样的,因此叫做continuous bag-of-words模型。如在袋子中取词,去取出数量足够的词就可以
相关文章
相关标签/搜索