Kafka 和 RocketMQ 之性能对比

点击上方“中间件兴趣圈”选择“设为星标”算法

作积极的人,越努力越幸运!缓存

在双十一过程当中投入一样的硬件资源,Kafka 搭建的日志集群单个Topic能够达到几百万的TPS,而使用RocketMQ组件的核心业务集群,集群TPS只能达到几十万TPS,这样的现象激发了我对二者性能方面的思考。
微信

舒适提示:TPS只是众多性能指标中的一个,咱们在作技术选型方面要从多方面考虑,本文并不打算就消息中间件选型方面投入太多笔墨,重点想尝试剖析二者在性能方面的设计思想。网络

一、文件布局


1.1 Kafka 文件布局

Kafka 文件在宏观上的布局以下图所示:
架构

正如上图所示,Kafka 文件布局的主要特征以下:

文件的组织以 topic + 分区进行组织,每个 topic 能够建立多个分区,每个分区包含单独的文件夹,而且是多副本机制,即 topic 的每个分区会有 Leader 与 Follow,而且 Kafka 内部有机制保证 topic 的某一个分区的 Leader 与 follow 不会存在在同一台机器,而且每一台 broker 会尽可能均衡的承担各个分区的 Leader,固然在运行过程当中若是不均衡,能够执行命令进行手动重平衡。Leader 节点承担一个分区的读写,follow 节点只负责数据备份。并发

Kafka 的负载均衡主要依靠分区 Leader 节点的分布状况。负载均衡

分区的 Leader 节点负责读写,而从节点负责数据同步,若是Leader分区所在的Broker节点发生宕机,会触发主从节点的切换,会在剩下的 follow 节点中选举一个新的 Leader 节点,其数据的流入流程以下图所示:
运维

分区 Leader 收到客户端的消息发送请求时,是写入到 Leader 节点后就返回仍是要等到它的从节点所有写入后再返回,这里很是关键,会直接影响消息发送端的时延,故 Kafka 提供了 ack 这个参数来进行策略选择:
  • ack = 0异步

    不等broker端确认就直接返回,即客户端将消息发送到网络中就返回发送成功。分布式

  • ack = 1

    Leader 节点接受并存储后向客户端返回成功。

  • ack = -1
    Leader节点和全部的Follow节点接受并成功存储再向客户端返回成功。

1.2 RocketMQ 文件布局

RocketMQ 的文件布局以下图所示:

RocketMQ 全部主题的消息都会写入到 commitlog 文件中,而后基于 commitlog 文件构建消息消费队列文件(Consumequeue),消息消费队列的组织结构按照 /topic/{queue} 进行组织。 从集群的视角来看以下图所示:
RocketMQ 默认采起的是主从同步,固然从RocketMQ4.5引入了多副本机制,但其 副本的粒度为 Commitlog 文件 ,上图中不一样 master 节点之间的数据完成不同(数据分片),而主从节点节点数据一致。

1.3 文件布局对比

Kafka 中文件的布局是以 Topic/partition ,每个分区一个物理文件夹,在分区文件级别实现文件顺序写,若是一个Kafka集群中拥有成百上千个主题,每个主题拥有上百个分区,消息在高并发写入时,其IO操做就会显得零散,其操做至关于随机IO,即 Kafka 在消息写入时的IO性能会随着 topic 、分区数量的增加,其写入性能会先上升,而后降低

而 RocketMQ在消息写入时追求极致的顺序写,全部的消息不分主题一概顺序写入 commitlog 文件,并不会随着 topic 和 分区数量的增长而影响其顺序性。但经过笔者的实践来看一台物理机并使用SSD盘,但一个文件没法充分利用磁盘IO的性能。

二者文件组织方式,除了在磁盘的顺序写方面有所区别后,因为其粒度的问题,Kafka 的 topic 扩容分区会涉及分区在各个 Broker 的移动,其扩容操做比较重,而 RocketMQ 数据存储是基于 commitlog 文件的,扩容时不会产生数据移动,只会对新的数据产生影响,RocketMQ 的运维成本对 Kafka 更低。

最后 Kafka 的 ack 参数能够类比 RocketMQ 的同步复制、异步复制。

Kafka 的 ack 参数为 1 时,对比 RocketMQ 的异步复制;-1 对标 RocketMQ 的 同步复制,而 -1 则对标 RocketMQ 消息发送方式的 oneway 模式。

二、数据写入方式


2.1 Kafka 消息写入方式

Kafka 的消息写入使用的是 FileChannel,其代码截图以下:


而且在消息写入时使用了 transferTo 方法,根据网上的资料说 NIO 中网络读写真正是零拷贝的就是须要调用 FileChannel 的 transferTo或者 transferFrom 方法,其内部机制是利用了 sendfile 系统调用。

2.2 RocketMQ 消息写入方式

RocketMQ 的消息写入支持 内存映射 与 FileChannel 写入两种方式, 示例以下图所示:

2.3 消息写入方式对比

尽管 RocketMQ 与 Kafka 都支持 FileChannel 方式写入,但 RocketMQ 基于 FileChannel 写入时调用的 API 却并非 transferTo,而是先调用 writer,而后定时 flush 刷写到磁盘,其代码截图以下:


为何 RocketMQ 不调用 transerTo 方法呢,我的以为和 RocketMQ 须要在 Broker 组装 MQ 消息格式有关,须要从网络中解码请求,传输到堆内存,而后对消息进行加工,最终持久化到磁盘相关。

从网上查询资料中大概倾向于这样一个 观点:sendfile 系统调用相比内存映射多了一次从用户缓存区拷贝到内核缓存区,但对于超过64K的内存写入时每每 sendfile 的性能更高,多是因为 sendfile 是基于块内存的。

三、消息发送方式


3.1 Kafka 消息发送机制

Kafka 在消息发送客户端采用了一个双端队列,引入了批处理思想,其消息发送机制以下图所示:

客户端经过调用 kafka 的消息发送者发送消息时,消息会首先存入到一个双端队列中,双端队列中单个元素为 ProducerBatch,表示一个发送批次,其最大大小受参数 batch.size 控制,默认为 16K。 而后会单独开一个 Send 线程,从双端队列中获取一个发送批次,将消息按批发送到 Kafka集群中,这里引入了 linger.ms 参数来控制 Send 线程的发送行为。

为了提升 kafka 消息发送的高吞吐量,即控制在缓存区中未积满 batch.size 时来控制消息发送线程的行为,是当即发送仍是等待必定时间,若是linger.ms 设置为 0表示当即发送,若是设置为大于0,则消息发送线程会等待这个值后才会向broker发送。linger.ms 参数者会增长响应时间,但有利于增长吞吐量。有点相似于 TCP 领域的 Nagle 算法

Kafka 的消息发送,在写入 ProducerBatch 时会按照消息存储协议组织好数据,在服务端能够直接写入到文件中。

3.2 RocketMQ 消息发送机制

RocketMQ 消息发送在客户端主要是根据路由选择算法选择一个队列,而后将消息发送到服务端,消息会在服务端按照消息的存储格式进行组织,而后进行持久化等操做。

3.3 消息发送对比

Kafka 在消息发送方面比 RokcetMQ 有一个显著的优点就是消息格式的组织是发生在客户端,这样会有一个大的优点节约了 Broker 端的CPU压力,客户端“分布式”的承接了其优点,其架构方式有点相似 shardingjdbc 与 MyCat 的区别。

Kafka 在消息发送端另一个特色是引入了双端缓存队列,Kafka 无处不在追求批处理,这样显著的特色是能提升消息发送的吞吐量,但与之带来的是增大消息的响应时间,而且带来了消息丢失的可能性,由于 Kafka 追加到消息缓存后会返回成功,若是消息发送方异常退出,会带来消息丢失。

Kafka 中的 linger.ms = 0 可类比 RocketMQ 消息发送的效果。

但 Kafka 经过提供 batch.size 与 linger.ms 两个参数按照场景进行定制化,比 RocketMQ 灵活。

例如日志集群,一般会调大 batch.size 与 linger.ms 参数,重复发挥消息批量发送机制,提升其吞吐量;但若是对一些响应时间比较敏感的话,能够适当减小 linger.ms 的值。

四、总结


从上面的对比来看,Kafka 在性能上综合表现确实要比 RocketMQ 更加的优秀,但在消息选型过程当中,咱们不只仅要参考其性能,还有从功能性上来考虑,例如 RocketMQ 提供了丰富的消息检索功能、事务消息、消息消费重试、定时消息等。

笔者我的认为一般在大数据、流式处理场景基本选用 Kafka,业务处理相关选择 RocketMQ。

欢迎加入个人知识星球,一块儿交流源码,探讨架构,揭秘亿级订单的架构设计与实践经验,打造高质量的技术交流圈,为广大星友提供高质量问答服务,长按以下二维码加入。


本文分享自微信公众号 - 中间件兴趣圈(dingwpmz_zjj)。
若有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一块儿分享。

相关文章
相关标签/搜索