随机森林和Adaboost对比

随机森林和adaboost算法都可以用来分类,它们都是优秀的基于决策树的组合算法。相对于经典线性判别分析,其分类效果一般要好很多。   boosting方法 提升学习(Boosting)是一种机器学习技术,可以用于回归和分类的问题,它每一步产生弱预测模型(如决策树),并加权累加到总模型中;如果每一步的弱预测模型的生成都是依据损失函数的梯度方式的,那么就称为梯度提升(Gradient boostin
相关文章
相关标签/搜索