再谈相机标定

前言

计算机视觉中,相机标定的重要性不言而喻,前面在公众号【3D视觉工坊】中写过有多篇文章是关于相机标定的,包括一分钟详解OpenCV之相机标定函数calibrateCamera()从零开始学习「张氏相机标定法」,可是,今天还想再次聊一聊相机标定,进一步加深对其基本方法与概念的理解。函数

一 基本问题

相机内外参数标定步骤主要包括以下:工具

  1. 考虑相机线性模型: 学习

  2. 解算m_{ij}项;优化

  3. 分解内、外参数;3d

  4. 考虑非线性项。cdn

Zhang方法:由张正友提出,OpenCV等普遍使用。在Zhang方法以前,通常都是使用立体靶标,对于立体靶标,很难计算其特征点的三维坐标。blog

Zhang方法特色:使用平面靶标摆多个pose(可未知)。get

Zhang方法标定步骤: (1)对一个pose,计算单应性矩阵; (2)有三个以上pose,根据各单应矩阵计算线性相机参数; (3)使用非线性优化方法计算非线性参数。it

二 Zhang方法

  • 第一步:求解单应矩阵——基本方程 Zhang方法的特色:使用平面靶标摆多个pose。

因为特征点在平面上,咱们此处令Z=0,则有上图中的表达式,也可看出:单应矩阵H为3x3的矩阵。io

那么如何求解单应矩阵,创建内参数方程呢?

注:因为Z=0,故而上图中r_{3}一项没有,也即为0。

对应每个pose,可获得上述两个方程。

  • 第二步:求解内参数——创建方程

**注:**具体的详细步骤,可参考《Learning OpenCV3》。

  • 第三步:求解外参数

  • 第四步(最后一步):非线性畸变参数求解

注:Zhang方法呢,只考虑了径向畸变,对于OpenCV等工具包里,考虑了其余畸变。简单来讲,计算畸变参数,主要是利用了重投影方法。

相关文章
相关标签/搜索