JavaShuo
栏目
标签
关于EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
时间 2020-12-27
标签
对抗样本
繁體版
原文
原文链接
在本文中,作者基于之前的Carlini & Wagner攻击提出了一些新的改进,从而在确保攻击成功率的情况下,增强了攻击的可转移性。 作者仍然沿用之前C&W攻击的目标函数 f(x,t) f ( x , t ) : f(x,t)=max{maxj≠t[Logit(x)]j−[Logit(x)]t,−k} f ( x , t ) = max { max j ≠ t [ L o g i t ( x
>>阅读原文<<
相关文章
1.
[paper]Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
2.
关于Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks的理解
3.
Paper Review: Adversarial Examples
4.
[advGAN]Generating Adversarial Examples With Adversarial Networks
5.
【生成对抗样本】Simple Black-Box Adversarial Attacks on Deep Neural Networks
6.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
7.
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
8.
Generating Adversarial Examples with Adversarial Networks
9.
Adversarial Examples 对抗样本
10.
Recognizing irregular entities in biomedical text via deep neural networks
更多相关文章...
•
XPath Examples
-
XPath 教程
•
Spring基于Annotation装配Bean
-
Spring教程
•
NewSQL-TiDB相关
•
☆基于Java Instrument的Agent实现
相关标签/搜索
examples
networks
adversarial
attacks
elasticnet
neural
deep
关于
我的理解
理解
NoSQL教程
MySQL教程
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
vs2019运行opencv图片显示代码时,窗口乱码
2.
app自动化 - 元素定位不到?别慌,看完你就能解决
3.
在Win8下用cisco ××× Client连接时报Reason 422错误的解决方法
4.
eclipse快速补全代码
5.
Eclipse中Java/Html/Css/Jsp/JavaScript等代码的格式化
6.
idea+spring boot +mabitys(wanglezapin)+mysql (1)
7.
勒索病毒发生变种 新文件名将带有“.UIWIX”后缀
8.
【原创】Python 源文件编码解读
9.
iOS9企业部署分发问题深入了解与解决
10.
安装pytorch报错CondaHTTPError:******
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
[paper]Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
2.
关于Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks的理解
3.
Paper Review: Adversarial Examples
4.
[advGAN]Generating Adversarial Examples With Adversarial Networks
5.
【生成对抗样本】Simple Black-Box Adversarial Attacks on Deep Neural Networks
6.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
7.
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
8.
Generating Adversarial Examples with Adversarial Networks
9.
Adversarial Examples 对抗样本
10.
Recognizing irregular entities in biomedical text via deep neural networks
>>更多相关文章<<