JavaShuo
栏目
标签
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
时间 2021-01-04
原文
原文链接
一.摘要 1.出发点:(1)深度网络对对抗攻击(adversarial attack)即对对抗样本的天生缺陷。 (2)当输入信息与自然样本差别并不大是却被网络错误的分类,如下图。 2.作者提出方法和论证如下: (1)从鲁棒优化的角度研究了神经网络的抗差鲁棒性。这与很多最近的相关工作具有广泛的一致性 eg:防御蒸馏,特征压缩。 (2)根据方法的原理性使得该方法在普遍范围内是通用和有效的,即使用最强的
>>阅读原文<<
相关文章
1.
对抗机器学习——Min Max模型(Towards Deep Learning Models Resistant to Adversarial Attacks)
2.
[论文解读]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
3.
[转载][paper]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
4.
Model-Reuse Attacks on Deep Learning Systems
5.
关于EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
6.
Deep Learning Models on Kubernetes with GPUs
7.
Deploying deep learning models in OpenCV
8.
【对抗攻击】【综述】Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
9.
How To Improve Deep Learning Performance
10.
WHEN NOT TO USE DEEP LEARNING
更多相关文章...
•
XQuery 选择 和 过滤
-
XQuery 教程
•
ASP.NET MVC - 模型
-
ASP.NET 教程
•
Java Agent入门实战(一)-Instrumentation介绍与使用
•
Java Agent入门实战(三)-JVM Attach原理与使用
相关标签/搜索
Deep Learning
adversarial
attacks
models
learning
deep
models&orm
2.models
Meta-learning
Learning Perl
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
ubantu 增加搜狗输入法
2.
用实例讲DynamicResource与StaticResource的区别
3.
firewall防火墙
4.
页面开发之res://ieframe.dll/http_404.htm#问题处理
5.
[实践通才]-Unity性能优化之Drawcalls入门
6.
中文文本错误纠正
7.
小A大B聊MFC:神奇的静态文本控件--初识DC
8.
手扎20190521——bolg示例
9.
mud怎么存东西到包_将MUD升级到Unity 5
10.
GMTC分享——当插件化遇到 Android P
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
对抗机器学习——Min Max模型(Towards Deep Learning Models Resistant to Adversarial Attacks)
2.
[论文解读]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
3.
[转载][paper]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
4.
Model-Reuse Attacks on Deep Learning Systems
5.
关于EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
6.
Deep Learning Models on Kubernetes with GPUs
7.
Deploying deep learning models in OpenCV
8.
【对抗攻击】【综述】Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
9.
How To Improve Deep Learning Performance
10.
WHEN NOT TO USE DEEP LEARNING
>>更多相关文章<<