JavaShuo
栏目
标签
对抗机器学习——Min Max模型(Towards Deep Learning Models Resistant to Adversarial Attacks)
时间 2021-01-08
原文
原文链接
Towards Deep Learning Models Resistant to Adversarial Attacks 论文URL: https://arxiv.org/pdf/1706.06083.pdf 论文代码: https://github.com/MadryLab/mnist_challenge 论文Key idea 本文提出了对抗机器学习领域里面鼎鼎大名的Min-max最优化框架,
>>阅读原文<<
相关文章
1.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
2.
对抗机器学习:Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples
3.
[论文解读]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
4.
对抗机器学习基础(论文学习笔记三)
5.
[转载][paper]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
6.
【对抗攻击】【综述】Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
7.
对抗机器学习:Generating Adversarial Malware Examples for Black-box Attacks Based on GAN
8.
对抗机器学习——Universal adversarial perturbations
9.
关于EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
10.
如何评估机器学习模型(How to Evaluate Machine Learning Models)
更多相关文章...
•
ASP.NET MVC - 模型
-
ASP.NET 教程
•
您已经学习了 XML Schema,下一步学习什么呢?
-
XML Schema 教程
•
Kotlin学习(二)基本类型
•
Tomcat学习笔记(史上最全tomcat学习笔记)
相关标签/搜索
Deep Learning
机器学习
adversarial
attacks
models
min
learning
对抗
max
deep
浏览器信息
网站主机教程
PHP教程
学习路线
服务器
初学者
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
ubantu 增加搜狗输入法
2.
用实例讲DynamicResource与StaticResource的区别
3.
firewall防火墙
4.
页面开发之res://ieframe.dll/http_404.htm#问题处理
5.
[实践通才]-Unity性能优化之Drawcalls入门
6.
中文文本错误纠正
7.
小A大B聊MFC:神奇的静态文本控件--初识DC
8.
手扎20190521——bolg示例
9.
mud怎么存东西到包_将MUD升级到Unity 5
10.
GMTC分享——当插件化遇到 Android P
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
2.
对抗机器学习:Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples
3.
[论文解读]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
4.
对抗机器学习基础(论文学习笔记三)
5.
[转载][paper]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
6.
【对抗攻击】【综述】Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
7.
对抗机器学习:Generating Adversarial Malware Examples for Black-box Attacks Based on GAN
8.
对抗机器学习——Universal adversarial perturbations
9.
关于EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解
10.
如何评估机器学习模型(How to Evaluate Machine Learning Models)
>>更多相关文章<<