JavaShuo
栏目
标签
Multi-Task Deep Neural Networks for Natural Language Understanding阅读笔记
时间 2020-12-27
标签
MT-DNN
繁體版
原文
原文链接
MT-DNN Introduction 学习文本的向量空间表达对许多自然语言理解问题都很重要. 现在两个比较流行的方法是 multi-task learning language model pre-training 在这篇论文中, 作者提出结合两种方法的网络–Multi-Task Deep Neural Network(MT-DNN). 1. Multi-Task learning multi-
>>阅读原文<<
相关文章
1.
论文阅读 Multi-Task Deep Neural Networks for Natural Language Understanding
2.
Multi-Task Deep Neural Networks for Natural Language Understanding【MT-DNN模型】
3.
CS224d: Deep Learning for Natural Language Process
4.
文献阅读:Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Under
5.
论文阅读笔记:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
6.
论文阅读笔记(五十三):Understanding Deep Convolutional Networks
7.
Stochastic Answer Networks for Natural Language Inference阅读笔记
8.
文献阅读笔记:NEZHA(Neural Contextualized Representation for Chinese Language Understanding)
9.
Understanding Neural Networks Through Deep Visualization
10.
Understanding Convolutional Neural Networks for NLP
更多相关文章...
•
RSS 阅读器
-
RSS 教程
•
PHP 实例 - AJAX RSS 阅读器
-
PHP教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
JDK13 GA发布:5大特性解读
相关标签/搜索
阅读笔记
language
networks
multitask
natural
understanding
neural
阅读
deep
读书笔记
MyBatis教程
Redis教程
Thymeleaf 教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸载与安装
2.
Unity NavMeshComponents 学习小结
3.
Unity技术分享连载(64)|Shader Variant Collection|Material.SetPassFast
4.
为什么那么多人用“ji32k7au4a83”作密码?
5.
关于Vigenere爆0总结
6.
图论算法之最小生成树(Krim、Kruskal)
7.
最小生成树 简单入门
8.
POJ 3165 Traveling Trio 笔记
9.
你的快递最远去到哪里呢
10.
云徙探险中台赛道:借道云原生,寻找“最优路线”
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文阅读 Multi-Task Deep Neural Networks for Natural Language Understanding
2.
Multi-Task Deep Neural Networks for Natural Language Understanding【MT-DNN模型】
3.
CS224d: Deep Learning for Natural Language Process
4.
文献阅读:Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Under
5.
论文阅读笔记:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
6.
论文阅读笔记(五十三):Understanding Deep Convolutional Networks
7.
Stochastic Answer Networks for Natural Language Inference阅读笔记
8.
文献阅读笔记:NEZHA(Neural Contextualized Representation for Chinese Language Understanding)
9.
Understanding Neural Networks Through Deep Visualization
10.
Understanding Convolutional Neural Networks for NLP
>>更多相关文章<<