技术干货 | 基于UAI-Train平台的分布式训练

在大型数据集上进行训练的现代神经网络架构,可以跨广泛的多种领域获取可观的结果,涵盖从图像识别、自然语言处理到欺诈检测和推荐系统等各个方面,但训练这些神经网络模型需要大量浮点计算能力。虽然,近年来 GPU 硬件算力和训练方法上均取得了重大进步,但在单一机器上,网络训练所需要的时间仍然长得不切实际,因此需要借助分布式GPU环境来提升神经网络训练系统的浮点计算能力。 TensorFlow分布式训练 (T
相关文章
相关标签/搜索