机器学习实战之朴素贝叶斯

在学习朴素贝叶斯分类模型之前,我们回顾一下之前学习的KNN和决策树,读者本人的总结:不同的机器学习方法有着不同的假设和理论进行支撑,而这些假设和理论在很大程度上体现了该算法的优缺点。 KNN:在样本空间中,相同的类型数据在空间呈聚集状态,也就是距离会靠近,基于这个假设,只需要对测试样本与训练样本进行距离计算,最近距离的样本的类别很大程度上就是测试样本的类别。 决策树:基于信息理论。样本数据是混乱的
相关文章
相关标签/搜索