问题:算法
Given a circular array (the next element of the last element is the first element of the array), print the Next Greater Number for every element. The Next Greater Number of a number x is the first greater number to its traversing-order next in the array, which means you could search circularly to find its next greater number. If it doesn't exist, output -1 for this number.数组
Example 1:优化
Input: [1,2,1] Output: [2,-1,2] Explanation: The first 1's next greater number is 2; The number 2 can't find next greater number; The second 1's next greater number needs to search circularly, which is also 2.
Note: The length of given array won't exceed 10000.this
解决:spa
① 数组是一个循环数组,就是说某一个元素的下一个较大值能够在其前面,那么对于循环数组的遍历,为了使下标不超过数组的长度,咱们须要对n取余。遍历每个数字,而后对于每个遍历到的数字,遍历全部其余数字,注意不是遍历到数组末尾,而是经过循环数组遍历其前一个数字,遇到较大值则存入结果res中,并break,再进行下一个数字的遍历。ci
class Solution { //214ms
public int[] nextGreaterElements(int[] nums) {
int len = nums.length;
int[] res = new int[len];
Arrays.fill(res,-1);
for (int i = 0;i < nums.length;i ++){
for (int j = i + 1;j < i + len;j ++){
if (nums[j % len] > nums[i]){
res[i] = nums[j % len];
break;
}
}
}
return res;
}
}element
② 使用栈来进行优化上面的算法,咱们遍历两倍的数组,而后仍是坐标i对n取余,取出数字,若是此时栈不为空,且栈顶元素小于当前数字,说明当前数字就是栈顶元素的右边第一个较大数,那么创建两者的映射,而且去除当前栈顶元素,最后若是i小于n,则把i压入栈。由于res的长度必须是n,超过n的部分咱们只是为了给以前栈中的数字找较大值,因此不能压入栈。it
class Solution { //47ms
public int[] nextGreaterElements(int[] nums) {
int len = nums.length;
int[] res = new int[len];
Arrays.fill(res,-1);
Stack<Integer> stack = new Stack<>();
for (int i = 0;i < 2 * len;i ++){
int num = nums[i % len];
while (! stack.isEmpty() && nums[stack.peek()] < num){
res[stack.peek()] = num;
stack.pop();
}
if (i < len) stack.push(i);
}
return res;
}
}io
③ 使用数组实现栈。ast
class Solution {//26ms public int[] nextGreaterElements(int[] nums) { int len = nums.length; int[] res = new int[len]; Arrays.fill(res,-1); int[] stack = new int[2 * nums.length]; int top = -1; for (int i = 0;i < 2 * len;i ++){ int index= i % len; while(top >= 0 && nums[stack[top]] < nums[index]){ res[stack[top --]] = nums[index]; } stack[++ top] = index; } return res; } }